首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It has been established that the precise positioning of nucleosomes on genomic DNA can be achieved, at least for a minority of them, through sequence-dependent processes. However, to what extent DNA sequences play a role in the positioning of the major part of nucleosomes is still debated. The aim of the present study is to examine to what extent long-range correlations (LRC) are related to the presence of nucleosomes. Using the wavelet transform technique, we perform a comparative analysis of the DNA text and of the corresponding bending profiles generated with curvature tables based on nucleosome positioning data. The exploration of a number of eukaryotic and bacterial genomes through the optics of the so-called "wavelet transform microscope" reveals a characteristic scale of 100-200 bp that separates two regimes of different LRC. Here, we focus on the existence of LRC in the small-scale regime (10-200 bp) which are actually observed in eukaryotic genomes, in contrast to their absence in eubacterial genomes. Analysis of viral DNA genomes shows that, like their host's genomes, eukaryotic viruses present LRC but eubacterial viruses do not. There is one exception for genomes of poxviruses (Vaccinia and Melamoplus sanguinipes) which do not replicate in the cell nucleus and do not exhibit LRC. No small-scale LRC are detected in the genomes of all examined RNA viruses, with the exception of retroviruses. These results together with the observation of LRC between particular sequence motifs known to participate in the formation of nucleosomes (e.g. AA dinucleotides) strongly suggest that the 10-200 bp LRC are a signature of the sequence-dependence of nucleosome positioning. Finally, we discuss possible interpretations of these LRC in terms of the physical mechanisms that might govern the positioning and the dynamics of the nucleosomes along the DNA chain through cooperative processes.  相似文献   

2.
DNA sequence is an important determinant of the positioning, stability, and activity of nucleosomes, yet the molecular basis of these effects remains elusive. A "consensus DNA sequence" for nucleosome positioning has not been reported and, while certain DNA sequence preferences or motifs for nucleosome positioning have been discovered, how they function is not known. Here, we report that an unexpected observation concerning the reassembly of nucleosomes during salt gradient dialysis has allowed a breakthrough in our efforts to identify the nucleosomal locations of the DNA sequence motifs that dominate histone-DNA interactions and nucleosome positioning. We conclude that a previous selection experiment for high-affinity, nucleosome-forming DNA sequences exerted selective pressure chiefly on the central stretch of the nucleosomal DNA. This observation implies that algorithms for aligning the selected DNA sequences should seek to optimize the alignment over much less than the full 147 bp of nucleosomal DNA. A new alignment calculation implemented these ideas and successfully aligned 19 of the 41 sequences in a non-redundant database of selected high-affinity, nucleosome-positioning sequences. The resulting alignment reveals strong conservation of several stretches within a central 71 bp of the nucleosomal DNA. The alignment further reveals an inherent palindromic symmetry in the selected DNAs; it makes testable predictions of nucleosome positioning on the aligned sequences and for the creation of new positioning sequences, both of which are upheld experimentally; and it suggests new signals that may be important in translational nucleosome positioning.  相似文献   

3.

Background

An organism’s DNA sequence is one of the key factors guiding the positioning of nucleosomes within a cell’s nucleus. Sequence-dependent bending anisotropy dictates how DNA is wrapped around a histone octamer. One of the best established sequence patterns consistent with this anisotropy is the periodic occurrence of AT-containing dinucleotides (WW) and GC-containing dinucleotides (SS) in the nucleosomal locations where DNA is bent in the minor and major grooves, respectively. Although this simple pattern has been observed in nucleosomes across eukaryotic genomes, its use for prediction of nucleosome positioning was not systematically tested.

Results

We present a simple computational model, termed the W/S scheme, implementing this pattern, without using any training data. This model accurately predicts the rotational positioning of nucleosomes both in vitro and in vivo, in yeast and human genomes. About 65 – 75% of the experimentally observed nucleosome positions are predicted with the precision of one to two base pairs. The program is freely available at http://people.rit.edu/fxcsbi/WS_scheme/. We also introduce a simple and efficient way to compare the performance of different models predicting the rotational positioning of nucleosomes.

Conclusions

This paper presents the W/S scheme to achieve accurate prediction of rotational positioning of nucleosomes, solely based on the sequence-dependent anisotropic bending of nucleosomal DNA. This method successfully captures DNA features critical for the rotational positioning of nucleosomes, and can be further improved by incorporating additional terms related to the translational positioning of nucleosomes in a species-specific manner.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-313) contains supplementary material, which is available to authorized users.  相似文献   

4.
Packaging of eukaryotic genomes into chromatin affects every process that occurs on DNA. The positioning of nucleosomes on underlying DNA plays a key role in the regulation of these processes, as the nucleosome occludes underlying DNA sequences. Here, we review the literature on mapping nucleosome positions in various organisms, and discuss how nucleosome positions are established, what effect nucleosome positioning has on control of gene expression, and touch on the correlations between chromatin packaging, sequence evolution, and the evolution of gene expression programs.  相似文献   

5.
How eukaryotic genomes encode the folding of DNA into nucleosomes and how this intrinsic organization of chromatin guides biological function are questions of wide interest. The physical basis of nucleosome positioning lies in the sequence-dependent propensity of DNA to adopt the tightly bent configuration imposed by the binding of the histone proteins. Traditionally, only DNA bending and twisting deformations are considered, while the effects of the lateral displacements of adjacent base pairs are neglected. We demonstrate, however, that these displacements have a much more important structural role than ever imagined. Specifically, the lateral Slide deformations observed at sites of local anisotropic bending of DNA define its superhelical trajectory in chromatin. Furthermore, the computed cost of deforming DNA on the nucleosome is sequence-specific: in optimally positioned sequences the most easily deformed base-pair steps (CA:TG and TA) occur at sites of large positive Slide and negative Roll (where the DNA bends into the minor groove). These conclusions rest upon a treatment of DNA that goes beyond the conventional ribbon model, incorporating all essential degrees of freedom of "real" duplexes in the estimation of DNA deformation energies. Indeed, only after lateral Slide displacements are considered are we able to account for the sequence-specific folding of DNA found in nucleosome structures. The close correspondence between the predicted and observed nucleosome locations demonstrates the potential advantage of our "structural" approach in the computer mapping of nucleosome positioning.  相似文献   

6.
Abstract

Recent studies of genome-wide nucleosomal organization suggest that the DNA sequence is one of the major determinants of nucleosome positioning. Although the search for underlying patterns encoded in nucleosomal DNA has been going on for about 30 years, our knowledge of these patterns still remains limited. Based on our evaluations of DNA deformation energy, we developed new scoring functions to predict nucleosome positioning. There are three principal differences between our approach and earlier studies: (i) we assume that the length of nucleosomal DNA varies from 146 to 147 bp; (ii) we consider the anisotropic flexibility of pyrimidine-purine (YR) dimeric steps in the context of their neighbors (e.g., YYRR versus RYRY); (iii) we postulate that alternating AT-rich and GC-rich motifs reflect sequence-dependent interactions between histone arginines and DNA in the minor groove. Using these functions, we analyzed 20 nucleosome positions mapped in vitro at single nucleotide resolution (including clones 601, 603, 605, the pGUB plasmid, chicken β-globin and three 5S rDNA genes). We predicted 15 of the 20 positions with 1-bp precision, and two positions with 2-bp precision. The predicted position of the ‘601’ nucleosome (i.e., the optimum of the computed score) deviates from the experimentally determined unique position by no more than 1 bp—an accuracy exceeding that of earlier predictions.

Our analysis reveals a clear heterogeneity of the nucleosomal sequences which can be divided into two groups based on the positioning ‘rules’ they follow. The sequences of one group are enriched by highly deformable YR/YYRR motifs at the minor-groove bending sites SHL ±3.5 and ±5.5, which is similar to the α-satellite sequence used in most crystallized nucleosomes. Apparently, the positioning of these nucleosomes is determined by the interactions between histones H2A/H2B and the terminal parts of nucleosomal DNA. In the other group (that includes the ‘601’ clone) the same YR/YYRR motifs occur predominantly at the sites SHL ±1.5. The interaction between the H3/H4 tetramer and the central part of the nucleosomal DNA is likely to be responsible for the positioning of nucleosomes of this group, and the DNA trajectory in these nucleosomes may differ in detail from the published structures.

Thus, from the stereochemical perspective, the in vitro nucleosomes studied here follow either an X-ray-like pattern (with strong deformations in the terminal parts of nucleosomal DNA), or an alternative pattern (with the deformations occurring predominantly in the central part of the nucleosomal DNA). The results presented here may be useful for genome-wide classification of nucleosomes, linking together structural and thermodynamic characteristics of nucleosomes with the underlying DNA sequence patterns guiding their positions.  相似文献   

7.
Spontaneous sharp bending of double-stranded DNA   总被引:13,自引:0,他引:13  
Sharply bent DNA is essential for gene regulation in prokaryotes and is a major feature of eukaryotic nucleosomes and viruses. The explanation normally given for these phenomena is that specific proteins sharply bend DNA by application of large forces, while the DNA follows despite its intrinsic inflexibility. Here we show that DNAs that are 94 bp in length-comparable to sharply looped DNAs in vivo-spontaneously bend into circles. Proteins can enhance the stability of such loops, but the loops occur spontaneously even in naked DNA. Random DNA sequences cyclize 10(2)-10(4) times more easily than predicted from current theories of DNA bending, while DNA sequences that position nucleosomes cyclize up to 10(5) times more easily. These unexpected results establish DNA as an active participant in the formation of looped regulatory complexes in vivo, and they point to a need for new theories of DNA bending.  相似文献   

8.
Archaea, bacteria and eukaryotes represent the main kingdoms of life. Is there any trend for amino acid compositions of proteins found in full genomes of species of different kingdoms? What is the percentage of totally unstructured proteins in various proteomes? We obtained amino acid frequencies for different taxa using 195 known proteomes and all annotated sequences from the Swiss-Prot data base. Investigation of the two data bases (proteomes and Swiss-Prot) shows that the amino acid compositions of proteins differ substantially for different kingdoms of life, and this difference is larger between different proteomes than between different kingdoms of life. Our data demonstrate that there is a surprisingly small selection for the amino acid composition of proteins for higher organisms (eukaryotes) and their viruses in comparison with the "random" frequency following from a uniform usage of codons of the universal genetic code. On the contrary, lower organisms (bacteria and especially archaea) demonstrate an enhanced selection of amino acids. Moreover, according to our estimates, 12%, 3% and 2% of the proteins in eukaryotic, bacterial and archaean proteomes are totally disordered, and long (> 41 residues) disordered segments are found to occur in 16% of arhaean, 20% of eubacterial and 43% of eukaryotic proteins for 19 archaean, 159 bacterial and 17 eukaryotic proteomes, respectively. A correlation between amino acid compositions of proteins of various taxa, show that the highest correlation is observed between eukaryotes and their viruses (the correlation coefficient is 0.98), and bacteria and their viruses (the correlation coefficient is 0.96), while correlation between eukaryotes and archaea is 0.85 only.  相似文献   

9.
10.
11.
12.

Background

The rapidly growing metagenomic databases provide increasing opportunities for computational discovery of new groups of organisms. Identification of new viruses is particularly straightforward given the comparatively small size of viral genomes, although fast evolution of viruses complicates the analysis of novel sequences. Here we report the metagenomic discovery of a distinct group of diverse viruses that are distantly related to the eukaryotic virus-like transposons of the Polinton superfamily.

Results

The sequence of the putative major capsid protein (MCP) of the unusual linear virophage associated with Phaeocystis globosa virus (PgVV) was used as a bait to identify potential related viruses in metagenomic databases. Assembly of the contigs encoding the PgVV MCP homologs followed by comprehensive sequence analysis of the proteins encoded in these contigs resulted in the identification of a large group of Polinton-like viruses (PLV) that resemble Polintons (polintoviruses) and virophages in genome size, and share with them a conserved minimal morphogenetic module that consists of major and minor capsid proteins and the packaging ATPase. With a single exception, the PLV lack the retrovirus-type integrase that is encoded in the genomes of all Polintons and the Mavirus group of virophages. However, some PLV encode a newly identified tyrosine recombinase-integrase that is common in bacteria and bacteriophages and is also found in the Organic Lake virophage group. Although several PLV genomes and individual genes are integrated into algal genomes, it appears likely that most of the PLV are viruses. Given the absence of protease and retrovirus-type integrase, the PLV could resemble the ancestral polintoviruses that evolved from bacterial tectiviruses. Apart from the conserved minimal morphogenetic module, the PLV widely differ in their genome complements but share a gene network with Polintons and virophages, suggestive of multiple gene exchanges within a shared gene pool.

Conclusions

The discovery of PLV substantially expands the emerging class of eukaryotic viruses and transposons that also includes Polintons and virophages. This class of selfish elements is extremely widespread and might have been a hotbed of eukaryotic virus, transposon and plasmid evolution. New families of these elements are expected to be discovered.
  相似文献   

13.
14.

Background

The periodical occurrence of dinucleotides with a period of 10.4 bases now is undeniably a hallmark of nucleosome positioning. Whereas many eukaryotic genomes contain visible and even strong signals for periodic distribution of dinucleotides, the human genome is rather featureless in this respect. The exact sequence features in the human genome that govern the nucleosome positioning remain largely unknown.

Results

When analyzing the human genome sequence with the positional autocorrelation method, we found that only the dinucleotide CG shows the 10.4 base periodicity, which is indicative of the presence of nucleosomes. There is a high occurrence of CG dinucleotides that are either 31 (10.4 × 3) or 62 (10.4 × 6) base pairs apart from one another - a sequence bias known to be characteristic of Alu-sequences. In a similar analysis with repetitive sequences removed, peaks of repeating CG motifs can be seen at positions 10, 21 and 31, the nearest integers of multiples of 10.4.

Conclusions

Although the CG dinucleotides are dominant, other elements of the standard nucleosome positioning pattern are present in the human genome as well. The positional autocorrelation analysis of the human genome demonstrates that the CG dinucleotide is, indeed, one visible element of the human nucleosome positioning pattern, which appears both in Alu sequences and in sequences without repeats. The dominant role that CG dinucleotides play in organizing human chromatin is to indicate the involvement of human nucleosomes in tuning the regulation of gene expression and chromatin structure, which is very likely due to cytosine-methylation/-demethylation in CG dinucleotides contained in the human nucleosomes. This is further confirmed by the positions of CG-periodical nucleosomes on Alu sequences. Alu repeats appear as monomers, dimers and trimers, harboring two to six nucleosomes in a run. Considering the exceptional role CG dinucleotides play in the nucleosome positioning, we hypothesize that Alu-nucleosomes, especially, those that form tightly positioned runs, could serve as "anchors" in organizing the chromatin in human cells.  相似文献   

15.
16.
Nucleosomes, the basic repeat units of eukaryotic chromatin, have been suggested to influence the evolution of eukaryotic genomes, both by altering the propensity of DNA to mutate and by selection acting to maintain or exclude nucleosomes in particular locations. Contrary to the popular idea that nucleosomes are unique to eukaryotes, histone proteins have also been discovered in some archaeal genomes. Archaeal nucleosomes, however, are quite unlike their eukaryotic counterparts in many respects, including their assembly into tetramers (rather than octamers) from histone proteins that lack N- and C-terminal tails. Here, we show that despite these fundamental differences the association between nucleosome footprints and sequence evolution is strikingly conserved between humans and the model archaeon Haloferax volcanii. In light of this finding we examine whether selection or mutation can explain concordant substitution patterns in the two kingdoms. Unexpectedly, we find that neither the mutation nor the selection model are sufficient to explain the observed association between nucleosomes and sequence divergence. Instead, we demonstrate that nucleosome-associated substitution patterns are more consistent with a third model where sequence divergence results in frequent repositioning of nucleosomes during evolution. Indeed, we show that nucleosome repositioning is both necessary and largely sufficient to explain the association between current nucleosome positions and biased substitution patterns. This finding highlights the importance of considering the direction of causality between genetic and epigenetic change.  相似文献   

17.
Endogenous retroviruses are a common component of the eukaryotic genome, and their evolution and potential function have attracted considerable interest. More surprising was the recent discovery that eukaryotic genomes contain sequences from RNA viruses that have no DNA stage in their life cycle. Similarly, several single-stranded DNA viruses have left integrated copies in their host genomes. This review explores some major evolutionary aspects arising from the discovery of these endogenous viral elements (EVEs). In particular, the reasons for the bias toward EVEs derived from negative-sense RNA viruses are considered, as well as what they tell us about the long-term "arms races" between hosts and viruses, characterized by episodes of selection and counter-selection. Most dramatically, the presence of orthologous EVEs in divergent hosts demonstrates that some viral families have ancestries dating back almost 100 million years, and hence are far older than expected from the phylogenetic analysis of their exogenous relatives.  相似文献   

18.
Transposon Tn903 contains the APH gene for kanamycin resistance, which is active in yeast [A. Jiménez and J. Davies (1980) Nature (London) 287, 869-871] and is flanked by two inverted repeats (IR) 1057 bp long. When plasmid pAJ50, carrying Tn903 and the 2-microns circle origin of replication, is cloned into Saccharomyces cerevisiae, nucleosomes are assembled in vivo on the prokaryotic DNA of the transposon. Indirect end labeling revealed that three nucleosomes are preferentially positioned on symmetrical sequences from both IRs. DNase I digestion also confirmed that the chromatin structure is symmetrical in both IRs. This suggests that sequence determinants are decisive for chromatin structure in these regions. We have calculated the rotational and translational fits [H. R. Drew and C. R. Calladine (1987) J. Mol. Biol. 195, 143-173] for the Tn903 sequence and the results indicate that the nucleosome positioning on the IRs is sequence-directed. Nucleosome deposition on the APH gene also occurs, but no clear positioning exists. Some sequence preference for positioning nucleosomes on the promoter can be predicted, especially from the translational fit. Experimental data indicate, however, that nucleosomes are absent from the promoter. Therefore, chromatin can be organized on prokaryotic DNA in a manner that resembles the typical eukaryotic chromatin structure.  相似文献   

19.
Genome deterioration: loss of repeated sequences and accumulation of junk DNA   总被引:18,自引:0,他引:18  
A global survey of microbial genomes reveals a correlation between genome size, repeat content and lifestyle. Free-living bacteria have large genomes with a high content of repeated sequences and self-propagating DNA, such as transposons and bacteriophages. In contrast, obligate intracellular bacteria have small genomes with a low content of repeated sequences and no or few genetic parasites. In extreme cases, such as in the 650kb-genomes of aphid endosymbionts of the genus Buchnera all repeated sequences above 200bp have been eliminated. We speculate that the initial downsizing of the genomes of obligate symbionts and parasites occurred by homologous recombination at repeated genes, leading to the loss of large blocks of DNA as well as to the consumption of repeated sequences. Further sequence elimination in these small genomes seems primarily to result from the accumulation of short deletions within genic sequences. This process may lead to temporary increases in the genomic content of pseudogenes and junk DNA. We discuss causes and long-term consequences of extreme genome size reductions in obligate intracellular bacteria.  相似文献   

20.
Abstract

The positioning of DNA on nucleosomes is critical to both the organization and expression of the genetic message. Here we focus on DNA conformational signals found in the growing library of known high-resolution core-particle structures and the ways in which these features may contribute to the positioning of nucleosomes on specific DNA sequences. We survey the chemical composition of the protein-DNA assemblies and extract features along the DNA superhelical pathway—the minor-groove width and the deformations of successive base pairs—determined with reasonable accuracy in the structures. We also examine the extent to which the various nucleosome core-particle structures accommodate the observed settings of the crystallized sequences and the known positioning of the high-affinity synthetic ‘601’ sequence on DNA. We ‘thread’ these sequences on the different structural templates and estimate the cost of each setting with knowledge-based potentials that reflect the conformational properties of the DNA base-pair steps in other high-resolution protein-bound complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号