首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diffusion in the bacterial cytoplasm is regarded as the primary method of intracellular protein movement and must play a major role in controlling the rates of cell processes. A number of recent studies have used green fluorescent protein (GFP) tagging and fluorescence microscopy to probe the movement and distribution of proteins in the bacterial cytoplasm. However, the dynamic behavior of indigenous proteins must be controlled by a complex mixture of specific interactions, combined with the basic physical constraints imposed by the viscosity and macromolecular crowding of the cytoplasm. These factors are difficult to unravel in studies with indigenous proteins. To what extent the addition of a GFP tag might affect the movement of a protein through the cytoplasm has also remained unknown. To resolve these problems, we have carried out a systematic study of the size dependence of protein diffusion coefficients in the Escherichia coli cytoplasm, using engineered GFP multimers (from 2 to 6 covalently linked GFP molecules). Diffusion coefficients were measured using confocal fluorescence recovery after photobleaching (FRAP). At least up to 110 kDa (four linked GFP molecules), the diffusion coefficient varies with size roughly as would be predicted from the Einstein-Stokes equation for a classical (Newtonian) fluid. Thus, protein diffusion coefficients are predictable over this range. GFP tagging of proteins has little impact on the diffusion coefficient over this size range and therefore need not significantly perturb protein movement. Two indigenous E. coli proteins were used to show that their specific interactions within the cell are the main controllers of the diffusion rate.The use of fluorescence microscopic techniques to monitor macromolecular diffusion in eukaryotic (HeLa) cells showed that the diffusion of DNA is strongly size dependent but also that two fluorescently labeled dextrans (70 kDa and 580 kDa) can diffuse freely in the cytoplasm and nucleus (16). Within bacterial cells such as Escherichia coli, similar measurements are challenging because of the small dimensions of the cell. Nevertheless, studies of the mobility of fluorescently tagged proteins are starting to give powerful insights into the dynamics of processes occurring in living bacterial cells. Examples include studies of the mobility of signal transduction proteins in the E. coli cytoplasm (22), the mobility and distribution of transporters and respiratory complexes in the plasma membrane (14, 15), and the dynamic assembly/disassembly of the flagellar motor (13). All of these studies depend on the use of cells engineered to express fusion proteins in which the protein of interest is fused to a fluorescent protein tag, usually a variant of green fluorescent protein (GFP). In many cases, the fluorescent tag is comparable in size to or even larger than the protein of interest. For example, the chemotaxis signal transducer CheY (14 kDa) was tagged with yellow fluorescent protein (YFP), producing a fusion protein of about 41 kDa (3, 22) It remains an open question how much the addition of a substantial fluorescent tag might perturb the mobility of the protein of interest.The bacterial cytoplasm is a complex, crowded environment (5). The movement of proteins within the cytoplasm must be constrained by a combination of viscosity, macromolecular crowding, and specific interactions of the protein with other cell components (e.g., other proteins, nucleic acids, and the cytoplasmic membrane). Any indigenous protein is likely to have specific interactions with other cell components. Therefore, it is difficult to dissect out the specific aspects of its behavior from the more general physical constraints in the cytoplasm. The effects of crowding in the cytoplasm could be complex. For example, it is conceivable that macromolecules could form a molecular sieve imposing a distinct size limit on protein mobility (19). The diffusion of fluorescent proteins in the E. coli cytoplasm can conveniently be measured using fluorescence recovery after photobleaching (FRAP) (6, 11, 18). To resolve the question of the size dependence of protein diffusion in the E. coli cytoplasm, FRAP was used to measure diffusion coefficients (D) for a series of engineered GFP oligomers, ranging in size from 30 kDa (GFP monomers) to 165 kDa (six linked GFP molecules). The compact barrel-like structure of GFP (30) minimizes its interactions with other proteins. Diffusion in the cytoplasm is independent of the type and amount of coexpressed protein, and overcrowding of the cytoplasm does not seem to lead to self-interaction of GFP (24). Since GFP is not indigenous to E. coli and is unlikely to have specific interactions with other cell components, it can be assumed that the behavior of GFP oligomers reflects only the simple physical constraints controlling protein movement in the cytoplasm.  相似文献   

2.
When deprived of combined nitrogen, the filamentous cyanobacterium Anabaena PCC 7120 relies on intercellular cooperation involving two cell types: nitrogen-fixing heterocysts and photosynthetic vegetative cells. Heterocysts send fixed nitrogen to vegetative cells over long distances along the filament, receiving a reduced carbon source from them. These intercellular exchanges might involve a continuous periplasm along the filament or cytoplasm-to-cytoplasm conduits or both. In the present study, the green fluorescent protein (GFP) was fused to a twin-arginine translocation signal sequence, which exported GFP to the periplasm of either a heterocyst using the heterocyst-specific promoters PhepA and PpatB or to the periplasm of vegetative cells using the vegetative cell-specific promoter PrbcL. Using the techniques of FRAP (fluorescence recovery after photobleaching) and FLIP (fluorescence loss in photobleaching), we found no evidence for intercellular diffusion of GFP through the periplasm, either from a heterocyst to vegetative cells or vice versa, or among vegetative cells. GFP could diffuse within the periplasm of the producing cell, but the diffusion stopped at the cell border. GFP diffusion could occur between two dividing cells before septum closure. This study indicates that barriers exist at the periplasmic space to prevent free GFP diffusion across cell border along the filament.  相似文献   

3.
Protein diffusion in mammalian cell cytoplasm   总被引:1,自引:0,他引:1  
We introduce a new method for mesoscopic modeling of protein diffusion in an entire cell. This method is based on the construction of a three-dimensional digital model cell from confocal microscopy data. The model cell is segmented into the cytoplasm, nucleus, plasma membrane, and nuclear envelope, in which environment protein motion is modeled by fully numerical mesoscopic methods. Finer cellular structures that cannot be resolved with the imaging technique, which significantly affect protein motion, are accounted for in this method by assigning an effective, position-dependent porosity to the cell. This porosity can also be determined by confocal microscopy using the equilibrium distribution of a non-binding fluorescent protein. Distinction can now be made within this method between diffusion in the liquid phase of the cell (cytosol/nucleosol) and the cytoplasm/nucleoplasm. Here we applied the method to analyze fluorescence recovery after photobleach (FRAP) experiments in which the diffusion coefficient of a freely-diffusing model protein was determined for two different cell lines, and to explain the clear difference typically observed between conventional FRAP results and those of fluorescence correlation spectroscopy (FCS). A large difference was found in the FRAP experiments between diffusion in the cytoplasm/nucleoplasm and in the cytosol/nucleosol, for all of which the diffusion coefficients were determined. The cytosol results were found to be in very good agreement with those by FCS.  相似文献   

4.
Fluidity is essential for many biological membrane functions. The basis for understanding membrane structure remains the classic Singer‐Nicolson model, in which proteins are embedded within a fluid lipid bilayer and able to diffuse laterally within a sea of lipid. Here we report lipid and protein diffusion in the plasma membrane of live cells of the bacterium Escherichia coli, using Fluorescence Recovery after Photobleaching (FRAP) and Total Internal Reflection Fluorescence (TIRF) microscopy to measure lateral diffusion coefficients. Lipid and protein mobility within the membrane were probed by visualizing an artificial fluorescent lipid and a simple model membrane protein consisting of a single membrane‐spanning alpha‐helix with a Green Fluorescent Protein (GFP) tag on the cytoplasmic side. The effective viscosity of the lipid bilayer is strongly temperature‐dependent, as indicated by changes in the lipid diffusion coefficient. Surprisingly, the mobility of the model protein was unaffected by changes in the effective viscosity of the bulk lipid, and TIRF microscopy indicates that it clusters in segregated, mobile domains. We suggest that this segregation profoundly influences the physical behaviour of the protein in the membrane, with strong implications for bacterial membrane function and bacterial physiology.  相似文献   

5.
Lateral diffusion of proteins in the periplasm of Escherichia coli.   总被引:12,自引:6,他引:6       下载免费PDF全文
We have introduced biologically active, fluorescently labeled maltose-binding protein into the periplasmic space of Escherichia coli and measured its lateral diffusion coefficient by the fluorescence photobleaching recovery method. Diffusion of this protein in the periplasm was found to be surprisingly low (lateral diffusion coefficient, 0.9 X 10(-10) cm2 s-1), about 1,000-fold lower than would be expected for diffusion in aqueous medium and almost 100-fold lower than for an equivalent-size protein in the cytoplasm. Galactose-binding protein, myoglobin, and cytochrome c were also introduced into the periplasm and had diffusion coefficients identical to that determined for the maltose-binding protein. For all proteins nearly 100% recovery of fluorescence was obtained after photobleaching, indicating that the periplasm is a single contiguous compartment surrounding the cell. These data have considerable implications for periplasmic structure and for the role of periplasmic proteins in transport and chemotaxis.  相似文献   

6.
To visualize the latter stages of cell division in live Escherichia coli, we have carried out fluorescence recovery after photobleaching (FRAP) on 121 cells expressing cytoplasmic green fluorescent protein and periplasmic mCherry. Our data show conclusively that the cytoplasm is sealed prior to the periplasm during the division event.  相似文献   

7.
This review outlines approaches to the cloning and expression of proteins in Escherichia coli. The expression vectors described here (pIN-III derivatives) utilize the strong lipoprotein promoter, which is controlled by the lac-UV5 promoter-operator. These vectors provide the means for targeting a protein to any of the four subcellular compartments of the bacterial cell: cytoplasm, cytoplasmic membrane, periplasm, and outer membrane. Of particular importance is that secretion of proteins into the E. coli periplasm (using the OmpA signal peptide) is applicable for the production of both prokaryotic and eukaryotic proteins thereby enhancing protein activity and stability.  相似文献   

8.
Gram-negative bacteria shed outer membrane vesicles composed of outer membrane and periplasmic components. Since vesicles from pathogenic bacteria contain virulence factors and have been shown to interact with eukaryotic cells, it has been proposed that vesicles behave as delivery vehicles. We wanted to determine whether heterologously expressed proteins would be incorporated into the membrane and lumen of vesicles and whether these altered vesicles would associate with host cells. Ail, an outer membrane adhesin/invasin from Yersinia enterocolitica, was detected in purified outer membrane and in vesicles from Escherichia coli strains DH5alpha, HB101, and MC4100 transformed with plasmid-encoded Ail. In vesicle-host cell co-incubation assays we found that vesicles containing Ail were internalized by eukaryotic cells, unlike vesicles without Ail. To determine whether lumenal vesicle contents could be modified and delivered to host cells, we used periplasmically expressed green fluorescent protein (GFP). GFP fused with the Tat signal sequence was secreted into the periplasm via the twin arginine transporter (Tat) in both the laboratory E. coli strain DH5alpha and the pathogenic enterotoxigenic E. coli ATCC strain 43886. Pronase-resistant fluorescence was detectable in vesicles from Tat-GFP-transformed strains, demonstrating that GFP was inside intact vesicles. Inclusion of GFP cargo increased vesicle density but did not result in morphological changes in vesicles. These studies are the first to demonstrate the incorporation of heterologously expressed outer membrane and periplasmic proteins into bacterial vesicles.  相似文献   

9.
The twin-arginine translocation (Tat) system targets cofactor-containing proteins across the Escherichia coli cytoplasmic membrane via distinct signal peptides bearing a twin-arginine motif. In this study, we have analysed the mechanism and capabilities of the E. coli Tat system using green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). Fractionation studies and fluorescence measurements demonstrate that GFP is exported to the periplasm where it is fully active. Export is almost totally blocked in tat deletion mutants, indicating that the observed export in wild-type cells occurs predominantly, if not exclusively, by the Tat pathway. Imaging studies reveal a halo of fluorescence in wild-type cells corresponding to the exported periplasmic form; the GFP is distributed uniformly throughout the cytoplasm in a tat mutant. Because previous work has shown GFP to be incapable of folding in the periplasm, we propose that GFP is exported in a fully folded, active state. These data also show for the first time that heterologous proteins can be exported in an active form by the Tat pathway.  相似文献   

10.
To examine endothelial nitric-oxide synthase (eNOS) trafficking in living endothelial cells, the eNOS-deficient endothelial cell line ECV304 was stably transfected with an eNOS-green fluorescent protein (GFP) fusion construct and characterized by functional, biochemical, and microscopic analysis. eNOS-GFP was colocalized with Golgi and plasma membrane markers and produced NO in response to agonist challenge. Localization in the plasma membrane was dependent on the palmitoylation state, since the palmitoylation mutant of eNOS (C15S/C26S eNOS-GFP) was excluded from the plasma membrane and was concentrated in a diffuse perinuclear pattern. Fluorescence recovery after photobleaching (FRAP) revealed eNOS-GFP in the perinuclear region moving 3 times faster than the plasmalemmal pool, suggesting that protein-lipid or protein-protein interactions are different in these two cellular domains. FRAP of the palmitoylation mutant was two times faster than that of wild-type eNOS-GFP, indicating that palmitoylation was influencing the rate of trafficking. Interestingly, FRAP of C15S/C26S eNOS-GFP but not wild-type eNOS-GFP fit a model of protein diffusion in a lipid bilayer. These data suggest that the regulation of eNOS trafficking within the plasma membrane and Golgi are probably different mechanisms and not due to simple diffusion of the protein in a lipid bilayer.  相似文献   

11.
A genetic system for directly synthesizing eukaryotic membrane proteins in Escherichia coli and assessing their ability to insert into the bacterial cytoplasmic membrane is described. The components of this system are the direct expression vector, pYZ4, and the mature beta-lactamase (BlaM) cassette plasmid, pYZ5, that can be used to generate translational fusions of BlaM to any synthesized membrane protein. The beta-subunit of sheep-kidney Na,K-ATPase (beta NKA), a class-II plasma membrane protein, was synthesized in E. coli using pYZ4, and BlaM was fused to a normally extracellular portion of it. The fusion protein conferred ampicillin resistance on individual host cells, indicating that the BlaM portion had been translocated to the bacterial periplasm, and that, by inference, the eukaryotic plasma-membrane protein can insert into the bacterial cytoplasmic membrane. A series of 31 beta NKA::BlaM fusion proteins was isolated and characterised to map the topology of the eukaryotic plasma membrane protein with respect to the bacterial cytoplasmic membrane. This analysis revealed that the organisation of the beta NKA in the E. coli cytoplasmic membrane was indistinguishable from that in its native plasma membrane.  相似文献   

12.
13.
The physical and mechanical properties of the cell envelope of Escherichia coli are poorly understood. We use fluorescence recovery after photobleaching to measure diffusion of periplasmic green fluorescent protein and probe the fluidity of the periplasm as a function of external osmotic conditions. For cells adapted to growth in complete medium at 0.14–1.02 Osm, the mean diffusion coefficient <Dperi> increases from 3.4 μm2 s−1 to 6.6 μm2 s−1 and the distribution of Dperi broadens as growth osmolality increases. This is consistent with a net gain of water by the periplasm, decreasing its biopolymer volume fraction. This supports a model in which the turgor pressure drops primarily across the thin peptidoglycan layer while the cell actively maintains osmotic balance between periplasm and cytoplasm, thus avoiding a substantial pressure differential across the cytoplasmic membrane. After sudden hyperosmotic shock (plasmolysis), the cytoplasm loses water as the periplasm gains water. Accordingly, <Dperi> increases threefold. The fluorescence recovery after photobleaching is complete and homogeneous in all cases, but in minimal medium, the periplasm is evidently thicker at the cell tips. For the relevant geometries, Brownian dynamics simulations in model cytoplasmic and periplasmic volumes provide analytical formulae for extraction of accurate diffusion coefficients from readily measurable quantities.  相似文献   

14.
Quantitative measurements of diffusion can provide important information about how proteins and lipids interact with their environment within the cell and the effective size of the diffusing species. Confocal fluorescence recovery after photobleaching (FRAP) is one of the most widely accessible approaches to measure protein and lipid diffusion in living cells. However, straightforward approaches to quantify confocal FRAP measurements in terms of absolute diffusion coefficients are currently lacking. Here, we report a simplified equation that can be used to extract diffusion coefficients from confocal FRAP data using the half time of recovery and effective bleach radius for a circular bleach region, and validate this equation for a series of fluorescently labeled soluble and membrane‐bound proteins and lipids. We show that using this approach, diffusion coefficients ranging over three orders of magnitude can be obtained from confocal FRAP measurements performed under standard imaging conditions, highlighting its broad applicability.  相似文献   

15.
The transport and sorting of extracytoplasmic proteins in cyanobacteria is made complex by the presence of a highly differentiated membrane system. Proteins destined for the periplasm and thylakoid lumen are initially transported by Sec- and Tat-type pathways but little is known of the mechanisms that ultimately direct them to the correct destinations. We have generated a Synechocystis PCC6803 transformant that expresses a fusion protein comprising the Tat-specific targeting signal of Escherichia coli TorA linked to green fluorescent protein (GFP). Immunoblotting indicates the presence of mature-size GFP but no precursor form, demonstrating that efficient translocation has taken place. Confocal microscopy and immunogold electron microscopy reveal GFP to be almost exclusively located in the periplasm, with almost no protein evident in the thylakoid network. These data point to the operation of highly effective sorting pathways for soluble proteins in this cyanobacterium. The observed sorting of the GFP suggests that either (a) the Tat apparatus is located only in the plasma membrane or (b) the TorA-GFP is targeted across either membrane but the GFP is subsequently directed to the periplasm, perhaps by a default sorting pathway to this compartment.  相似文献   

16.
We have developed a periplasmic fluorescent reporter protein suitable for high-throughput membrane protein topology analysis in Escherichia coli. The reporter protein consists of a single chain (scFv) antibody fragment that binds to a fluorescent hapten conjugate with high affinity. Fusion of the scFv to membrane protein sites that are normally exposed in the periplasmic space tethers the scFv onto the inner membrane. Following permealization of the outer membrane to allow diffusion of the fluorescent hapten into the periplasm, binding to the anchored scFv renders the cells fluorescent. We show that cell fluorescence is an accurate and sensitive reporter of the location of residues within periplasmic loops. For topological analysis, a set of nested deletions in the membrane protein gene is employed to construct two libraries of gene fusions, one to the scFvand one to the cytoplasmic reporter green fluorescent protein (GFP). Fluorescent clones are isolated by flow cytometry and the sequence of the fusion junctions is determined to identify amino acid residues within periplasmic and cytoplasmic loops, respectively. We applied this methodology to the topology analysis of E. coli TatC protein for which previous studies had led to conflicting results. The ease of screening libraries of fusions by flow cytometry enabled the rapid identification of almost 90 highly fluorescent scFv and GFP fusions, which, in turn, allowed the fine mapping of TatC membrane topology.  相似文献   

17.
Non-integral membrane proteins frequently act as transduction hubs in vital signaling pathways initiated at the plasma membrane (PM). Their biological activity depends on dynamic interactions with the PM, which are governed by their lateral and cytoplasmic diffusion and membrane binding/unbinding kinetics. Accurate quantification of the multiple kinetic parameters characterizing their membrane interaction dynamics has been challenging. Despite a fair number of approximate fitting functions for analyzing fluorescence recovery after photobleaching (FRAP) data, no approach was able to cope with the full diffusion-exchange problem. Here, we present an exact solution and matlab fitting programs for FRAP with a stationary Gaussian laser beam, allowing simultaneous determination of the membrane (un)binding rates and the diffusion coefficients. To reduce the number of fitting parameters, the cytoplasmic diffusion coefficient is determined separately. Notably, our equations include the dependence of the exchange kinetics on the distribution of the measured protein between the PM and the cytoplasm, enabling the derivation of both k(on) and k(off) without prior assumptions. After validating the fitting function by computer simulations, we confirm the applicability of our approach to live-cell data by monitoring the dynamics of GFP-N-Ras mutants under conditions with different contributions of lateral diffusion and exchange to the FRAP kinetics.  相似文献   

18.
One of the most important omissions in recent evolutionary theory concerns how eukaryotes could emerge and evolve. According to the currently accepted views, the first eukaryotic cell possessed a nucleus, an endomembrane system, and a cytoskeleton but had an inefficient prokaryotic-like metabolism. In contrast, one of the most ancient eukaryotes, the metamonada Giardia lamblia, was found to have formerly possessed mitochondria. In sharp contrast with the traditional views, this paper suggests, based on the energetic aspect of genome organization, that the emergence of eukaryotes was promoted by the establishment of an efficient energy-converting organelle, such as the mitochondrion. Mitochondria were acquired by the endosymbiosis of ancient α-purple photosynthetic Gram-negative eubacteria that reorganized the prokaryotic metabolism of the archaebacterial-like ancestral host cells. The presence of an ATP pool in the cytoplasm provided by this cell organelle allowed a major increase in genome size. This evolutionary change, the remarkable increase both in genome size and complexity, explains the origin of the eukaryotic cell itself. The loss of cell wall and the appearance of multicellularity can also be explained by the acquisition of mitochondria. All bacteria use chemiosmotic mechanisms to harness energy; therefore the periplasm bounded by the cell wall is an essential part of prokaryotic cells. Following the establishment of mitochondria, the original plasma membrane-bound metabolism of prokaryotes, as well as the funcion of the periplasm providing a compartment for the formation of different ion gradients, has been transferred into the inner mitochondrial membrane and intermembrane space. After the loss of the essential function of periplasm, the bacterial cell wall could also be lost, which enabled the naked cells to establish direct connections among themselves. The relatively late emergence of mitochondria may be the reason why multicellularity evolved so slowly. Received: 29 May 1997 / Accepted: 9 October 1997  相似文献   

19.
Facile diffusion of globular proteins within a cytoplasm that is dense with biopolymers is essential to normal cellular biochemical activity and growth. Remarkably, Escherichia coli grows in minimal medium over a wide range of external osmolalities (0.03 to 1.8 osmol). The mean cytoplasmic biopolymer volume fraction ((phi)) for such adapted cells ranges from 0.16 at 0.10 osmol to 0.36 at 1.45 osmol. For cells grown at 0.28 osmol, a similar phi range is obtained by plasmolysis (sudden osmotic upshift) using NaCl or sucrose as the external osmolyte, after which the only available cellular response is passive loss of cytoplasmic water. Here we measure the effective axial diffusion coefficient of green fluorescent protein (D(GFP)) in the cytoplasm of E. coli cells as a function of (phi) for both plasmolyzed and adapted cells. For plasmolyzed cells, the median D(GFP) (D(GFP)(m)) decreases by a factor of 70 as (phi) increases from 0.16 to 0.33. In sharp contrast, for adapted cells, D(GFP)(m) decreases only by a factor of 2.1 as (phi) increases from 0.16 to 0.36. Clearly, GFP diffusion is not determined by (phi) alone. By comparison with quantitative models, we show that the data cannot be explained by crowding theory. We suggest possible underlying causes of this surprising effect and further experiments that will help choose among competing hypotheses. Recovery of the ability of proteins to diffuse in the cytoplasm after plasmolysis may well be a key determinant of the time scale of the recovery of growth.  相似文献   

20.
FRAP法对内源性GFP在活细胞中动态分布的共焦显微镜成像   总被引:1,自引:0,他引:1  
金鹰  邢达 《激光生物学报》2005,14(4):293-298
各种分子在核质问的动态分布与它们的跨膜转运密切相关。离子、r证矾A和多数小分子量蛋白可以通过核孔复合物(NPG,nuclear pore complexes)在核质问自由扩散,而分子量大于70kDa的分子需要ATP和核定位序列才能实现跨膜转运。本实验利用荧光漂白后恢复(FRAP,fluorescence recovery after photobleaching)法观测人肺腺癌肿瘤细胞(ASTC-a-1)中表达的27 kDa EGFP在核质问的被动扩散,并以激光共焦显微镜进行实时成像。转染EGFP外源基因的肿瘤细胞系在经过半年的传代培养后仍能稳定而高效的表达其荧光标记。实验表明,EGFP分子可以通过核孔在核质间被动扩散,但扩散速度远低于在核内或质内的速度,没有证据表明EGFP可以在细胞问扩散。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号