首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The inflexibility of double-stranded DNA with respect to bending and twisting is well established in vitro. Understanding apparent DNA physical properties in vivo is a greater challenge. Here, we exploit repression looping with components of the Escherichia coli lac operon to monitor DNA flexibility in living cells. We create a minimal system for testing the shortest possible DNA repression loops that contain an E. coli promoter, and compare the results to prior experiments. Our data reveal that loop-independent repression occurs for certain tight operator/promoter spacings. When only loop-dependent repression is considered, fits to a thermodynamic model show that DNA twisting limits looping in vivo, although the apparent DNA twist flexibility is 2- to 4-fold higher than in vitro. In contrast, length-dependent resistance to DNA bending is not observed in these experiments, even for the shortest loops constraining <0.4 persistence lengths of DNA. As observed previously for other looping configurations, loss of the nucleoid protein heat unstable (HU) markedly disables DNA looping in vivo. Length-independent DNA bending energy may reflect the activities of architectural proteins and the structure of the DNA topological domain. We suggest that the shortest loops are formed in apical loops rather than along the DNA plectonemic superhelix.  相似文献   

3.
The lack of a rigorous analytical theory for DNA looping has caused many DNA-loop-mediated phenomena to be interpreted using theories describing the related process of DNA cyclization. However, distinctions in the mechanics of DNA looping versus cyclization can have profound quantitative effects on the thermodynamics of loop closure. We have extended a statistical mechanical theory recently developed for DNA cyclization to model DNA looping, taking into account protein flexibility. Notwithstanding the underlying theoretical similarity, we find that the topological constraint of loop closure leads to the coexistence of multiple classes of loops mediated by the same protein structure. These loop topologies are characterized by dramatic differences in twist and writhe; because of the strong coupling of twist and writhe within a loop, DNA looping can exhibit a complex overall helical dependence in terms of amplitude, phase, and deviations from uniform helical periodicity. Moreover, the DNA-length dependence of optimal looping efficiency depends on protein elasticity, protein geometry, and the presence of intrinsic DNA bends. We derive a rigorous theory of loop formation that connects global mechanical and geometric properties of both DNA and protein and demonstrates the importance of protein flexibility in loop-mediated protein-DNA interactions.  相似文献   

4.
DNA looping plays a key role in many fundamental biological processes, including gene regulation, recombination, and chromosomal organization. The looping of DNA is often mediated by proteins whose structural features and physical interactions can alter the length scale at which the looping occurs. Looping and unlooping processes are controlled by thermodynamic contributions associated with mechanical deformation of the DNA strand and entropy arising from thermal fluctuations of the conformation. To determine how these confounding effects influence DNA looping and unlooping kinetics, we present a theoretical model that incorporates the role of the protein interactions, DNA mechanics, and conformational entropy. We show that for shorter DNA strands the interaction distance affects the transition state, resulting in a complex relationship between the looped and unlooped state lifetimes and the physical properties of the looped DNA. We explore the range of behaviors that arise with varying interaction distance and DNA length. These results demonstrate how DNA deformation and entropy dictate the scaling of the looping and unlooping kinetics versus the J-factor, establishing the connection between kinetic and equilibrium behaviors. Our results show how the twist-and-bend elasticity of the DNA chain modulates the kinetics and how the influence of the interaction distance fades away at intermediate to longer chain lengths, in agreement with previous scaling predictions.  相似文献   

5.
6.
7.
8.
9.
DNA looping is important for gene repression and activation in Escherichia coli and is necessary for some kinds of gene regulation and recombination in eukaryotes. We are interested in sequence-nonspecific architectural DNA-binding proteins that alter the apparent flexibility of DNA by producing transient bends or kinks in DNA. The bacterial heat unstable (HU) and eukaryotic high-mobility group B (HMGB) proteins fall into this category. We have exploited a sensitive genetic assay of DNA looping in living E. coli cells to explore the extent to which HMGB proteins and derivatives can complement a DNA looping defect in E. coli lacking HU protein. Here, we show that derivatives of the yeast HMGB protein Nhp6A rescue DNA looping in E. coli lacking HU, in some cases facilitating looping to a greater extent than is observed in E. coli expressing normal levels of HU protein. Nhp6A-induced changes in the DNA length-dependence of repression efficiency suggest that Nhp6A alters DNA twist in vivo. In contrast, human HMGB2-box A derivatives did not rescue looping.  相似文献   

10.
The intrinsic stiffness of DNA limits its ability to be bent and twisted over short lengths, but such deformations are required for gene regulation. One classic paradigm is DNA looping in the regulation of the Escherichia coli lac operon. Lac repressor protein binds simultaneously to two operator sequences flanking the lac promoter. Analysis of the length dependence of looping-dependent repression of the lac operon provides insight into DNA deformation energetics within cells. The apparent flexibility of DNA is greater in vivo than in vitro, possibly because of host proteins that bind DNA and induce sites of flexure. Here we test DNA looping in bacterial strains lacking the nucleoid proteins HU, IHF or H-NS. We confirm that deletion of HU inhibits looping and that quantitative modeling suggests residual looping in the induced operon. Deletion of IHF has little effect. Remarkably, DNA looping is strongly enhanced in the absence of H-NS, and an explanatory model is proposed. Chloroquine titration, psoralen crosslinking and supercoiling-sensitive reporter assays show that the effects of nucleoid proteins on looping are not correlated with their effects on either total or unrestrained supercoiling. These results suggest that host nucleoid proteins can directly facilitate or inhibit DNA looping in bacteria.  相似文献   

11.
12.
Proteins interacting at multiple sites on DNA via looping play an important role in many fundamental biochemical processes. Restriction endonucleases that must bind at two recognition sites for efficient activity are a useful model system for studying such interactions. Here we used single DNA manipulation to study sixteen known or suspected two-site endonucleases. In eleven cases (BpmI, BsgI, BspMI, Cfr10I, Eco57I, EcoRII, FokI, HpaII, NarI, Sau3AI and SgrAI) we found that substitution of Ca2+ for Mg2+ blocked cleavage and enabled us to observe stable DNA looping. Forced disruption of these loops allowed us to measure the frequency of looping and probability distributions for loop size and unbinding force for each enzyme. In four cases we observed bimodal unbinding force distributions, indicating conformational heterogeneity and/or complex binding energy landscapes. Measured unlooping events ranged in size from 7 to 7500 bp and the most probable size ranged from less than 75 bp to nearly 500 bp, depending on the enzyme. In most cases the size distributions were in much closer agreement with theoretical models that postulate sharp DNA kinking than with classical models of DNA elasticity. Our findings indicate that DNA looping is highly variable depending on the specific protein and does not depend solely on the mechanical properties of DNA.  相似文献   

13.
14.
The probability that two sites on a linear DNA molecule will contact each other by looping depends on DNA flexibility. Although the flexibility of naked DNA in vitro is well characterized, looping in chromatin is poorly understood. By extending existing theory, we present a single equation that describes DNA looping over all distances. We also show that DNA looping in vitro can be measured accurately by FLP recombination between sites from 74 bp to 15 kb apart. In agreement with previous work, a persistence length of 50 nm was determined. FLP recombination of the same substrates in mammalian cells showed that chromatin increases the flexibility of DNA at short distances, giving an apparent persistence length of 27 nm.  相似文献   

15.
The kinetochore is a complex protein–DNA assembly that provides the mechanical linkage between microtubules and the centromere DNA of each chromosome. Centromere DNA in all eukaryotes is wrapped around a unique nucleosome that contains the histone H3 variant CENP-A (Cse4p in Saccharomyces cerevisiae). Here, we report that the inner kinetochore complex (CBF3) is required for pericentric DNA looping at the Cse4p-containing nucleosome. DNA within the pericentric loop occupies a spatially confined area that is radially displaced from the interpolar central spindle. Microtubule-binding kinetochore complexes are not involved in pericentric DNA looping but are required for the geometric organization of DNA loops around the spindle microtubules in metaphase. Thus, the mitotic segregation apparatus is a composite structure composed of kinetochore and interpolar microtubules, the kinetochore, and organized pericentric DNA loops. The linkage of microtubule-binding to centromere DNA-looping complexes positions the pericentric chromatin loops and stabilizes the dynamic properties of individual kinetochore complexes in mitosis.  相似文献   

16.
17.
Genetic events often require proteins to be activated by interacting with two DNA sites, trapping the intervening DNA in a loop. While much is known about looping equilibria, only a few studies have examined DNA-looping dynamics experimentally. The restriction enzymes that cut DNA after interacting with two recognition sites, such as FokI, can be used to exemplify looping reactions. The reaction pathway for FokI on a supercoiled DNA with two sites was dissected by fast kinetics to reveal, in turn: the initial binding of a protein monomer to each site; the protein–protein association to form the dimer, trapping the loop; the subsequent phosphodiester hydrolysis step. The DNA motion that juxtaposes the sites ought on the basis of Brownian dynamics to take ~2 ms, but loop capture by FokI took 230 ms. Hence, DNA looping by FokI is rate limited by protein association rather than DNA dynamics. The FokI endonuclease also illustrated activation by looping: it cut looped DNA 400 times faster than unlooped DNA.  相似文献   

18.
Proteins that can bring together separate DNA sites, either on the same or on different DNA molecules, are critical for a variety of DNA-based processes. However, there are no general and technically simple assays to detect proteins capable of DNA looping in vivo nor to quantitate their in vivo looping efficiency. Here, we develop a quantitative in vivo assay for DNA-looping proteins in Escherichia coli that requires only basic DNA cloning techniques and a LacZ assay. The assay is based on loop assistance, where two binding sites for the candidate looping protein are inserted internally to a pair of operators for the E. coli LacI repressor. DNA looping between the sites shortens the effective distance between the lac operators, increasing LacI looping and strengthening its repression of a lacZ reporter gene. Analysis based on a general model for loop assistance enables quantitation of the strength of looping conferred by the protein and its binding sites. We use this ‘loopometer’ assay to measure DNA looping for a variety of bacterial and phage proteins.  相似文献   

19.
Bending of double-stranded DNA (dsDNA) is associated with many important biological processes such as DNA-protein recognition and DNA packaging into nucleosomes. Thermodynamics of dsDNA bending has been studied by a method called cyclization which relies on DNA ligase to covalently join short sticky ends of a dsDNA. However, ligation efficiency can be affected by many factors that are not related to dsDNA looping such as the DNA structure surrounding the joined sticky ends, and ligase can also affect the apparent looping rate through mechanisms such as nonspecific binding. Here, we show how to measure dsDNA looping kinetics without ligase by detecting transient DNA loop formation by FRET (Fluorescence Resonance Energy Transfer). dsDNA molecules are constructed using a simple PCR-based protocol with a FRET pair and a biotin linker. The looping probability density known as the J factor is extracted from the looping rate and the annealing rate between two disconnected sticky ends. By testing two dsDNAs with different intrinsic curvatures, we show that the J factor is sensitive to the intrinsic shape of the dsDNA.  相似文献   

20.
Epstein-Barr nuclear antigen 1 (EBNA1) activates DNA replication from the Epstein-Barr virus latent origin, oriP. This activation involves the direct interaction of EBNA1 dimers with multiple sites within the two noncontiguous functional elements of the origin, the family of repeats (FR) element and the dyad symmetry (DS) element. The efficient interaction of EBNA1 dimers bound to these two elements in oriP results in the formation of DNA loops in which the FR and DS elements are bound together through EBNA1. In order to elucidate the mechanism by which EBNA1 induces oriP DNA looping, we have investigated the DNA sequences and EBNA1 amino acids required for EBNA1-mediated DNA looping. Using a series of truncation mutants of EBNA1 produced in baculovirus and purified to apparent homogeneity, we have demonstrated that the EBNA1 DNA binding and dimerization domain is not sufficient to mediate oriP DNA looping and that an additional region(s) located between amino acids 346 and 450 is required. Single EBNA1-binding sites, separated by 930 bp of plasmid DNA, were also shown to support EBNA1-mediated looping, indicating that the formation of large EBNA1 complexes, such as those observed on oriP FR and DS elements, is not a requirement for looping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号