首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses to electrophoretic application of acetylcholine and suberyldicholine were investigated in identified neurons (LPed-2 and LPed-3) isolated from the left pedal ganglion ofPlanorbarius corneus. When microelectrodes filled with potassium chloride were used the reversal potentials of responses to acetylcholine and suberyldicholine were less negative than when microelectrodes filled with potassium sulfate were used; these reversal potentials were shifted toward depolarization if chloride ions in the medium were replaced by sulfate. These facts indicate that the responses in both LPed-2 and LPed-3 depend on chloride ions. Reversal potentials for acetylcholine and suberyldicholine in LPed-3 were virtually identical (–51 and –50 mV respectively), but in LPed-2 they differed significantly (–46 and –62 mV respectively). Replacement of sodium ions by Tris ions shifted the reversal potential for acetylcholine in LPed-2 toward hyperpolarization but did not change the reversal potential for suberyldicholine. Benzohexonium had the same action. The reversal potential for acetylcholine in medium with a reduced sodium concentration or in the presence of benzohexonium was the same as for suberyldicholine. It is concluded that on neuron LPed-2 acetylcholine activates both acetylcholine receptors which control conductance for chloride ions and acetylcholine receptors which change conductance for sodium ions, whereas suberyldicholine acts only on acetylcholine receptors responsible for the chloride conductance of the membrane.I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 12, No. 5, pp. 533–540, September–October, 1980.  相似文献   

2.
Two types of slow excitatory postsynaptic potentials (EPSPs) with different properties were found in neurons of the rabbit superior cervical sympathetic ganglion. In our group of neurons slow EPSPs increased during artificial hyperpolarization and decreased during depolarization of the membrane. The input resistance of the cells fell or remained unchanged during the development of slow EPSPs. In the second group of cells slow EPSPs increased during depolarization and decreased during hyperpolarization. The reversal potential of these responses, determined by extrapolation, was –78.9±3.6 mV. Depolarization responses to activation of muscarinic cholinergic receptors by acetylcholine or carbachol developed in 53% of neurons with an increase in input resistance and had a reversal potential of –83.2±6.7 mV. It is suggested that in cells of the first group the ionic mechanism of the slow EPSPs is similar to that of the fast EPSPs, whereas in cells of the second group its main component is a decrease in the potassium conductance of the membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 371–379, July–August, 1981.  相似文献   

3.
The effects of anticholinesterase preparations and cholinolytics on the potentials of the midbrain tectum evoked by stimulation of the optic tract and the opposite hemisphere were investigated in experiments on the perfused isolatedRana temporaria head. Low concentrations of galanthamine and eserine intensify the first and second postsynaptic components of the evoked potentials connected with the activation of both myelinated and unmyelinated fibers, and in higher concentration, first increase, and then reversibly inhibit them. Amisyl, depending on the concentration, partially or completely blocks both components and these effects are also reversible. Gangleron does not have an effect on the evoked potentials. A clear antagonism was found between anticholinesterase compounds and amisyl. After tetanic stimulation of both optic nerves simultaneously, a substance of acetylcholine nature appears in the perfusate. This makes it possible to assume that the optic terminals in the midbrain tectum form cholinergic synapses and that the corresponding postsynaptic structures contain cholineroreceptors of the muscarine type. Some differences in the dynamics of the changes in the first and second postsynaptic components from the effect of both galanthamine and eserine, as well as amisyl, indicate higher sensitivity of synaptic systems which consist of unmyelinated optic fibers. In contrast to the optic terminals, the transcommissural links do not form cholinergic synapses and anticholinesterase and cholinolytic substances do not have an effect on the transcommissural potentials.A. N. Severtsov Institute of Evolutionary Animal Morphology and Ecology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 4, pp. 386–393, July–August, 1971.  相似文献   

4.
The chemical nature of the carbohydrate determinants of the plasma membrane that affect the responses of identified neurons of the molluskHelix pomatia, induced by application of acetylcholine (ACh), was studied using D-mannose-specific (ConA), D-galactose-specific (RCA), N-acetyl-D-glucosamino-specific (WGA), and sialo-specific (LPA) lectins. Differences in the change in the Ach-induced chloride and sodium-potassium currents under the action of ConA and in the time and temperature dependences of the effects of ConA for these currents are evidence of the presence of different mechanisms of the influence of carbohydrate determinants containing mannose residues on the functional properties of the cholinergic receptors. On the basis of the time and temperature dependences of the inhibiting effects of WGA and RCA on the ACh-induced currents, it was suggested that endocytosis of the lectin-receptor complexes containing N-acetyl-D-glucosamine residues occurs.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 24, No. 2, pp. 161–169, March–April, 1992.  相似文献   

5.
The ionic mechanisms underlying modulatory effects of serotonin on acetylcholine-response in identified and nonidentifiedHelix pomatia neurons were investigated using voltage-clamping techniques at the neuronal membrane. External application of 10–5–10–4 M serotonin to the membrane of neurons responding to application of acetylcholine depending on Na+ depolarization (DNa response) reduced membrane conductivity during response to acetylcholine without changing reversal potential of acetylcholine-induced current. Acetylcholine (10–6–10–4 M) administration took place 1–3 min later. Neurons with response to acetylcholine application dependent on Cl+ depolarization (DCl response) or hyperpolarization (HCl response) behaved similarly. Analogous effects could be produced by external application of theophylline which, together with the latency and residual effect characteristic of serotonin action points to the participation of intracellular processes associated with the cellular cyclase system in the changes produced by serotonin in acetylcholineinduced response. Serotonin brought about a shift in reversal potential and an increase in the acetylcholine-induced current in those neurons where this response was associated with changed permeability at the membrane to certain types of ions. During two-stage acetylcholine-induced response of the DNa-HK type, serotonin inhibited the inward current stage. Mechanisms underlying modulatory serotonin action on acetylcholine-induced response in test neurons are discussed in the light of our findings.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 20, No. 1, pp. 57–64, January–February, 1988.  相似文献   

6.
Potassium currents through the somatic membrane of giant neurons ofHelix pomatia in normal (10 mM Ca) Ringer's solution and low-calcium (1 mM Ca) solution were studied by the voltage clamp method. With a decrease in the Ca concentration to 1 mM peak potassium conductance versus membrane, potential curves and inactivation curves were shifted along the voltage axis in the negative direction by about 10 mV. Inactivation of the delayed potassium current was slowed in low Ca solution. The effect of a decrease in external calcium concentration on volt-ampere and inactivation characteristics increased with a rise in external pH. These effects of a low Ca concentration on potassium mechanisms of the giant neuron somatic membrane can be attributed to changes in the negative surface potential in the region of the potassium channels.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Institute of Biology, Hungarian Academy of Sciences, Tihany. Translated from Neirofiziologiya, Vol. 8, No. 4, pp. 400–409, July–August, 1976.  相似文献   

7.
The response was investigated of neurons composing the cerebral ganglia inAchatina fulica (the Giant African snail) to application of acetylcholine (ACh), gamma-aminobutyric acid (GABA), and glycine (Gly). Chloride-dependent currents induced by these transmitters in 1 1/2-month old siblings were inhibited by dibutyryl-cAMP and strychnine. Inhibition of ACh response produced 10–8 M GABA was mimicked by application of dibutyryl-cAMP and isobutylmethylxanthine. Complete cross-desensitization was characteristic of both GABA- and Bly-induced response, but this effect did not occur when ACh and GABA (or Gly) were applied. A conclusion was reached on the basis of the pharmacological relationship between GABA- and Gly-induced response that these amino acids act on a single receptor — channel complex in the neurons of infant snails, whereas ACh-, GABA-, and Gly-induced chloride currents were not so related in cells of 4 year-oldAchatina.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 1, pp. 35–43, January–February, 1991.  相似文献   

8.
Summary Addition of 2.5 mM cyclic adenosine monophosphate (cAMP) to the solution bathing a rat diaphragm muscle alters the magnitude of depolarization responses to iontophoretic pulses of acetylcholine (ACh) at neuromuscular endplates. Alterations are repeatable with small variability on a given preparation for initial and repeat experiments on both hemidiaphragms, but are different on each preparation. Five min after addition of the nucleotide solution, increases (potentiations) of up to 30% above control levels and decreases (attenuations) to 50% below control levels are observed. The effects on sensitivity to ACh of dibutyryl cAMP (1.25 mM), monobutyryl cAMP (0.25 mM), and cAMP (2.5 mM) in Ca++-free solution are a function of whether the experiment is an initial one on that preparation or a repeat experiment after 10 or more minutes of perfusion flow. In all three cases, initial exposure attenuates sensitivity (means at 5 min: –30, –10, and –20%, respectively) and repeat exposure potentiates sensitivity (means: 20% at 5 min, 15% at 5 min, and 10% at 2 min respectively). A concentration of dibutyryl cAMP (0.25 mM) which is without effect on sensitivity alone, produces a large, transient potentiation (mean: 45% at 1 min) in conjunction with 0.5 mM theophylline. A decrease in the rate of desensitization is observed during exposure to 0.25 mM cAMP. These results are interpreted in terms of a physiological mechanism whereby receptor activity at the postjunctional membrane is modulated by cAMP formed from prejunctionally released ATP.  相似文献   

9.
Summary The effect of pH, temperature and carbon source on the specific growth rate of anAzobacter sp. was studied in nitrogen-deficient media. The optimum pH and temperature were 7.0 and 30°C respectively, with COD removal 27–85%. The strain was also used for treating effluents of a pharmaceutical industry, with 37–45% COD removal.  相似文献   

10.
Experiments on muscle fibers of the rat diaphragm (in vitro denervation) showed that their three-hour incubation in the cultural medium results in an 8-mV drop in the resting membrane potential (RMP). Addition of 5·10–8 M carbacholine to the cultural medium, mimicing the effect of non-quantum acetylcholine, delayed depolarization of the denervated muscle. The effect of carbacholine could not be eliminated byd-tubocurarine (5·10–6 M), a postsynaptic acetylcholine receptor blocker, and by ouabain (1·10–4 M), and inhibitor of Na+, K+-ATPase of the membrane. At the same time, the effect could be completely eliminated by Mg2+ ions (5·10–3 M), which blocked Ca2+ channels of the membrane, by N-nitroarginine (1·10–4 M), which inhibited the enzyme NO-synthase, and by hemoglobin (2·10–5 M), which inactivated the extracellular NO molecules. It is concluded that the released non-quantum acetylcholine can contribute to neural control of RMP of cross-striated muscle fibers via the Ca2+-dependent activation of NO synthesis in the sarcoplasm. The NO molecules can play the role of a retrograde signal indicative of the normal functioning of the neuromuscular synapse. The impairment of this link caused by a denervation-induced cessation of the non-quantum secretion can serve as a signal triggering the early changes in the muscle membrane following nerve transection.Neirofiziologiya/Neurophysiology, Vol. 27, No. 1, pp. 67–71, January–February, 1995.  相似文献   

11.
The effects of the calmodulin antagonists, calmidazolium (R 24571) and chlorpromazine on delayed outward potassium current at the somatic membrane were investigated in non-identified intracellularly perfused neurons isolated fromHelix pomatia. Voltage was clamped at the membrane. Extracellular application of these substances produced effective depression of the outward current. This effect even occurred at test substance concentrations of 10–9–10–8 M. Block-ade of delayed outward current was produced mainly as a result of suppressing the potassium current component dependent on intracellular potassium ions (Ik(Ca/in)). The possibility that the receptor for intracellular calcium responsible for modulating this current may be of a calmodulin-like nature is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 3, pp. 356–361, May–June, 1987.  相似文献   

12.
Research was carried out into the ionic aspects of depolarization potentials produced inHelix lucorum neuron RPa4 by injecting three cholinomimetics into the soma: acetylcholine, nicotine, and muscarine. Substances were used suppressing Na+, K+, Ca2+, and Cl conductance at the membrane. Acetylcholine brought about increased Na+, Ca2+; and Cl conductance. As the choline component was only slight, due to the similarity of membrane and resting potential for chloride, it might be deduced that the prevailing response to acetylcholine is associated with chemically controlled input of Na+ and Ca2+ into the cell. Nicotine and muscarine induced mainly sodium and calcium conductance respectively.M. V. Lomonosov State University, Moscow. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 305–314, May–June, 1989.  相似文献   

13.
The time course of weakening of inward calcium currents (inactivation) during prolonged (of the order of 1 sec) depolarizing shifts of membrane potential was studied in isolated dialyzed neurons of snailHelix pomatia. This decay of the current recorded in this way can be approximated by two exponential functions with time constants of 20–70 and 250–350 msec, respectively. With an increase in pH of the intracellular solution to 8.5 the fast component of the decay disappeared completely; the kinetics of the slow component in this case was very slightly retarded. It is concluded that the fast component of decay of the recorded current does not reflect a change in the calcium current but is due to parallel activation of the nonspecific outward current; the slow component, however, is true in activation of the calcium current. The rate of inactivation of this current was shown to be determined by its maximal value and not by the level of the depolarizing potential shift and it depends on the conditions of accumulation of calcium ions near the inner surface of the membrane.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 5, pp. 525–531, September–October, 1982.  相似文献   

14.
In an analysis of the postsynaptic mechanism of heterosynaptic facilitation, changes in the amplitude of the excitatory postsynaptic current (EPSC) and the current evoked by application of acetylcholine (ACh current), acting on the adenylate cyclase system of the LC-1 and RC-1 neurons of the molluskPlanorbis corneus, were compared. Both responses are n-cholinergic and depend on the membrane conductivity for Na+ and K+. Application of serotonin led to a 100–300% increase in the amplitude of the EPSC and (in most cases) the ACh current. However, in 30% of the cases, the increase in the EPSC was accompanied by a decrease in the ACh current. This is probably due to the different contributions of Na+ and K+ to the mechanism of activation of the conductivity of th channel-receptor complex of the nonsynaptic cell membrane. The influence of serotonin on the EPSC and ACh current was simulated by the action of phosphodiesterase blockers and adenylate cyclase activators. Phosphodiesterase activators and protein kinase blockers reversibly inhibited the EPSC and ACh current. Thus, activation of the adenylate cyclase system, mediated by the action of serotonin, promotes the development of a postsynaptic mechanism of formation of heterosynaptic facilitation of the EPSC in the command neurons of the mollusk.A. A. Bogomolets Institute of Physiology, Ukrainian Academy of Sciences, Kiev. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 676–683, November–December, 1991.  相似文献   

15.
Summary An alkalophilicStreptomyces which produced xylanase, isolated from soil, grew in a temperature range of 15–37°C. The pH optimum for growth was 10 and no growth occurred at pH 7. On a simple wheat bran medium the microorganism exhibited maximum enzyme secretion of 12 U/ml at pH 10. The enzyme had a broad pH optimum of 4.8–10 and the optimum temperature of 50°C. It was completely inactivated at 60°C in 2 h. The enzyme hydrolyzed xylan to a mixture of oligomeric products indicating that the main activity was of the endoxylanase type. The culture filtrate had no cellulase activity.  相似文献   

16.
The total electrical responses and action potentials of the neurons in the medial geniculate bodies in Vespertilionidae and Rhinolophidae were investigated. Maximum sensitivity to ultrasonic stimuli was recorded inMyotis oxygnathus (Vespertilionidae) in the range 10–40 kc/sec and 65–80 kc/sec, and in Rhinolophidae in the ranges 10–70 kc/sec and 81–86 kc/sec. Low thresholds were observed inMyotis oxygnathus for the frequencies covered by their echo-location cries, whereas the thresholds recorded in Rhinolophidae in the 80 kc/sec band (the principal frequency of their echo location cries) were 15–30 dB higher than those for adjacent frequencies. Minimum thresholds of off-responses were observed inMyotis oxygnathus in the range 50–60 kc/sec, and in Rhinolophidae in the range 78–80 kc/sec. The regions of neuronal response in both species of bat were generally similar in form to those of responses recorded in the medial geniculate bodies of other mammals. Some of the neurons in Rhinolophidae with a characteristic frequency of about 80 kc/sec were also sensitive to stimuli with one-half and one-third of the principal frequency. In Rhinolophidae the greatest selectivity for frequencies was possessed by neurons that responded within the range from 80 to 90 kc/sec.A. A. Zhadanov Leningrad State University. Translated from Neirofiziologiya, Vol. 3, No. 2, pp. 138–144, March–April, 1971.  相似文献   

17.
Summary The optimal growth rate ofLipomyces starkeyi, with dextran as sole carbon source, was found within the pH range 2.5–4.0, and temperature between 25–30°C. This yeast was unable to grow above 33°C. Dextranase production optima paralleled growth optima, except at pH 2.5. Decrease in enzyme yield at this pH could not be attributed to poor yeast growth or enzyme stability.  相似文献   

18.
Summary The fermentation of glucose byClostridium thermosaccharolyticum strains IMG 2811T, 6544 and 6564 was studied in batch culture in a complex medium at different temperatures in defined and free-floating pH conditions. All the strains ferment 5 g glucose.l–1 completely. The yield of the fermentation products turned out to be independent of the incubation temperature for strain IMG 2811T. Strain IMG 6544 produced at 60°C significantly more ethanol and less acetic acid, butyric acid, hydrogen gas and biomass than at lower temperatures. With strain IMG 6564, the opposite effect occurred: ethanol appeared to be the main fermentation product at 45°C; at 60°C less ethanol and more acetic acid, butyric acid and hydrogen gas was formed.Experiments, carried out with strain IMG 6564, at defined pH conditions (between 5.5 and 7) and different temperatures (45, 55 and 60°C) revealed no effect of the incubation temperature, but an important effect of the pH on the product formation. At pH 7, ethanol was the main fermentation product while minor amounts of hydrogen gas, acetic and butyric acid were produced. Lowering the pH gradually to 5.5 resulted in a decrease of ethanol and an increase of biomass, hydrogen gas, acetic, butyric and lactic acids. At pH higher than 7 no growth occurred. Similar conclusions could be drawn for strains IMG 2811T and 6544.  相似文献   

19.
Responses of nerve cells to puncture, to touching the surface of the mollusk leg, osmotic stimulation, and extracellular microiontophoretic injection of acetylcholine, noradrenalin, serotonin, atropine, and propranolol were recorded intracellularly in the right parietal, left pedal, and visceral ganglia of the unisolated circumpharyngeal ring ofLimnaea stagnalis. Selective sensitivity of the neurons to the biologically active substances was observed. Results indicative of the functional differences between the various ganglia and of their neurochemical organization were obtained. Selective blocking of the unit responses to puncture of the surface of the mollusk leg by atropine or propranolol suggests that different forms of excitation reaching the central neurons evoked different and specific neurochemical processes on their subsynaptic membranes which can retain the essential informativeness of the widely different afferent volleys converging on a single nerve cell.I. M. Sechenov First Moscow Medical Institute. Translated from Neirofiziologiya, Vol. 5, No. 5, pp. 510–518, September–October, 1973.  相似文献   

20.
The production of prostacyclin by rings of rabbit aorta was assessed by the radioimmunoassay of 6-K-PGF. In steady-state conditions, the rings released 11 ng 6-K-PGF per 100 mg tissue in 30 min. Acetylcholine increased this output: a significant effect was detected at 1 μM and at 10 μM the amplitude of stimulation was 10-fold. The production of PGE2 and PGF was also increased, but to a lesser extent. The stimulatory action of acetylcholine was mimicked by carbamylcholine and inhibited by atropine; it was abolished in a calcium-free medium. Dog and rat aorta also produced more 6-K-PGF in response to cholinergic agonists. A short rubbing of the intimal surface of the aorta removed the layer of endothelial cells and completely abolished the cholinergic effect. It is concluded that in the aorta, cholinergic agonists, acting on a muscarinic receptor, stimulate the production of prostacyclin by endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号