首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nature of the interaction between the enveloped DNA-containing poxviruses and the surfaces of host cells as a first step in virus infection is not known. In this investigation we have identified and defined structural and functional properties of a 32-kDa protein of vaccinia virus. This protein is part of the virus envelope and binds to the cell surface of various cultured cells. The gene encoding the 32-kDa viral protein was mapped and sequenced. It was found to code a 35,426-Da protein with a large N-terminal domain with sequence homology to carbonic anhydrases and a C-terminal domain with sequences similar to those of the attachment glycoprotein VP7 of rotavirus and to transmembrane proteins. A potential cell surface binding domain was within the last 50 amino acid residues of the C terminus. The 32-kDa protein is basic, predicted pI 8.67, is synthesized at late times post-infection, may form dimers held by disulfide bonds at the single cysteine 262, and is apparently non-glycosylated. The 32-kDa protein is a vaccinia virus antigen, with predicted antigenic sites located near amino acids 108-110 (carbonic anhydrase domain) and 298-299 (transmembrane domain). Several lines of evidence suggest that the 32-kDa protein is needed for efficient virus replication in cultured cells but that in addition to this protein other viral proteins are involved in the process of virus entry into cells.  相似文献   

2.
A monoclonal antibody, MAbC3, that reacts with a 14,000-molecular-weight envelope protein (14K protein) of vaccinia virus completely inhibited virus-induced cell fusion during infection. Immunoblot and immunofluorescence studies revealed that the 14K protein was synthesized at about 6 to 7 h postinfection and transported from the cytoplasm to the cell surface. Synthesis and transport of the 14K protein during infection occurred in the presence of rifampin, an inhibitor of virus maturation. One- and two-dimensional gel electrophoretic analyses demonstrated that the 14K protein forms largely trimers (42K) that are covalently linked by disulfide bonds. The facts that MAbC3 prevents virus uncoating and blocks virus-induced cell fusion but does not prevent virus attachment to cells and the 14K envelope protein forms trimers all suggest that this protein plays major role in virus penetration.  相似文献   

3.
A cDNA containing the complete coding sequence of the Bunyamwera virus (family Bunyaviridae) L genome segment has been constructed and cloned into two recombinant vaccinia virus expression systems. In the first, the L gene is under control of vaccinia virus P7.5 promoter; in the second, the L gene is under control of the bacteriophage T7 phi 10 promoter, and expression of the L gene requires coinfection with a second recombinant vaccinia virus which synthesizes T7 RNA polymerase. Both systems express a protein which is the same size as the Bunyamwera virus L protein and is recognized by a monospecific L antiserum. The expressed L protein was shown to be functional in synthesizing Bunyamwera virus RNA in a nucleocapsid transfection assay: recombinant vaccinia virus-infected cells were transfected with purified Bunyamwera virus nucleocapsids, and subsequently, total cellular RNA was analyzed by Northern (RNA) blotting. No Bunyamwera virus RNA was detected in control transfections, but in cells which had previously been infected with recombinant vaccinia viruses expressing the L protein, both positive- and negative-sense Bunyamwera virus S segment RNA was detected. The suitability of this system to delineate functional domains within the Bunyamwera virus L protein is discussed.  相似文献   

4.
Vaccinia virus is a highly cytocidal virus, but the steps that lead to virus penetration into cells, the first event in virus pathogenesis, have not been elucidated. We have shown that a 14-kDa envelope protein of vaccinia virus might play a major role in virus-penetration acting at the level of cell fusion (Rodriguez, J. F., Paez, E., and Esteban, M. (1987) J. Virol. 61, 395-404; Gong, S., Lai, C., and Esteban, M. (1990) Virology 178, 81-91). To carry out structural and functional studies on the vaccinia 14-kDa protein, it would be desirable to have a high level expression system, since the amount of protein that can be obtained from purified virus or from infected cells is very limited. In this investigation we demonstrate that the 14-kDa envelope protein of vaccinia virus is expressed in Escherichia coli in soluble form and at high levels. We establish, by several criteria, that the 14-kDa vaccinia virus protein expressed in E. coli is similar to the protein found in the virus particle based on apparent molecular mass, occurrence of disulfide-linked oligomers, reactivity against specific monoclonal antibody, and identity in amino-terminal sequence with the predicted DNA sequence of the gene. We define several structural and functional properties concerning the 14-kDa envelope protein of vaccinia virus. 1) 14 kDa is a trimer of identical subunits. 2) A monomer binds to itself more strongly than to a dimer or a trimer. 3) Oligomerization does not require cellular factors. 4) Trimers induce high titer neutralizing antibodies in animals which correlate with overall immunogenicity. 5) 14-kDa binds with specificity to the cell surface of cultured cells.  相似文献   

5.
Site-directed mutagenesis was used to identify functional domains present within the human immunodeficiency virus (HIV) tat protein. Transient cotransfection experiments showed that derivatives of tat protein with amino acid substitutions either at the amino-terminal end or at cysteine residue 22, 37, 27, or 25 were no longer able to transactivate HIV long terminal repeat-directed gene expression. Incubation of Tat expressed in Escherichia coli with zinc demonstrated that both authentic Tat and cysteine mutation derivatives could form metal-protein complexes. The tat proteins that contained alterations within the cluster of positively charged amino acid residues retained their ability to transactivate gene expression, albeit at markedly reduced levels. Indirect immunofluorescence showed that the authentic tat protein and the amino-terminal and cysteine substitution mutants all localized in the nucleus, with accumulation being most evident in the nucleolus. In contrast, nuclear accumulation was greatly reduced with the basic-substitution mutations. Consistent with this result, a fusion protein that contained amino acids GRKKR, derived from the basic region, fused to the amino-terminal end of beta-galactosidase also accumulated within the nucleus. These results demonstrate that the 14-kilodalton tat protein contains at least three distinct functional domains affecting localization and transactivation.  相似文献   

6.
赵超  闻玉梅 《生命科学》2004,16(5):267-270,287
乙肝病毒蛋白结构和功能是当前研究乙肝病毒的热点之一。HBV多聚酶的末端蛋白在病毒复制过程中起重要作用,主要包括前基因组RNA包装和DNA合成的蛋白引发等,并可抑制细胞对干扰素的反应。本文综述了乙肝病毒多聚酶末端蛋白的结构和功能,还比较了乙肝病毒与逆转录病毒多聚酶结构和功能的异同。  相似文献   

7.
Initiation of Adenovirus (Ad) DNA replication occurs by a protein-priming mechanism in which the viral precursor terminal protein (pTP) and DNA polymerase (pol) as well as two nuclear DNA-binding proteins from uninfected HeLa cells are required. Biochemical studies on the pTP and DNA polymerase proteins separately have been hampered due to their low abundance and their presence as a pTP-pol complex in Ad infected cells. We have constructed a genomic sequence containing the large open reading frame from the Ad5 pol gene to which 9 basepairs from a putative exon were ligated. When inserted behind a modified late promoter of vaccinia virus the resulting recombinant virus produced enzymatically active 140 kDa Ad DNA polymerase. The same strategy was applied to express the 80 kDa pTP gene in a functional form. Both proteins were overexpressed at least 30-fold compared to extracts from Adenovirus infected cells and, when combined, were fully active for initiation in an in vitro Adenovirus DNA replication system.  相似文献   

8.
Structural and functional studies of cross-linked Go protein subunits   总被引:3,自引:0,他引:3  
The guanine nucleotide binding proteins (G proteins) that couple hormone and other receptors to a variety of intracellular effector enzymes and ion channels are heterotrimers of alpha, beta, and gamma subunits. One way to study the interfaces between subunits is to analyze the consequences of chemically cross-linking them. We have used 1,6-bismaleimidohexane (BMH), a homobifunctional cross-linking reagent that reacts with sulfhydryl groups, to cross-link alpha to beta subunits of Go and Gi-1. Two cross-linked products are formed from each G protein with apparent molecular masses of 140 and 122 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both bands formed from Go reacted with anti-alpha o and anti-beta antibody. The mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis is anomalous since the undenatured, cross-linked proteins have the same Stokes radius as the native, uncross-linked alpha beta gamma heterotrimer. Therefore, each cross-linked product contains one alpha and one beta subunit. Activation of Go by guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) does not prevent cross-linking of alpha to beta gamma, consistent with an equilibrium between associated and dissociated subunits even in the presence of GTP gamma S. The same cross-linked products of Go are formed in brain membranes reacted with BMH as are formed in solution, indicating that the residues cross-linked by BMH in the pure protein are accessible when Go is membrane bound. Analysis of tryptic peptides formed from the cross-linked products indicates that the alpha subunit is cross-linked to the 26-kDa carboxyl-terminal portion of the beta subunit. The cross-linked G protein is functional, and its alpha subunit can change conformation upon binding GTP gamma S. GTP gamma S stabilizes alpha o to digestion by trypsin (Winslow, J.W., Van Amsterdam, J.R., and Neer, E.J. (1986) J. Biol. Chem. 261, 7571-7579) and also stabilizes the alpha subunit in the cross-linked product. Cross-linked G o can be ADP-ribosylated by pertussis toxin. This ADP-ribosylation is inhibited by GTP gamma S with a concentration dependence that is indistinguishable from that of the control, uncross-linked G o. These two kinds of experiments indicate that alpha o is able to change its conformation even though it cannot separate completely from beta gamma. Thus, although dissociation of the subunits accompanies activation of G o in solution, it is not obligatory for a conformational change to occur in the alpha subunit.  相似文献   

9.
10.
11.
The Rev proteins of the human immunodeficiency virus (HIV) are necessary for expression of viral structural gene products. Site-directed mutations were made within the HIV-2 rev gene to identify functional domains. We observed that similar to HIV-1 Rev, the HIV-2 Rev protein was phosphorylated, albeit to a much lesser extent than was HIV-1 Rev. We also found that like HIV-1 Rev, HIV-2 Rev localized to the nucleus, with a marked accumulation in the nucleolus. Mutations within a stretch of basic residues prevented both nuclear and nucleolar localization. Furthermore, mutant Rev proteins able to localize in the nucleus but unable to localize in the nucleolus were nonfunctional.  相似文献   

12.
13.
A recombinant vaccinia virus containing cloned DNA sequences coding for the three structural proteins and nonstructural proteins NS1 and NS2a of dengue type 4 virus was constructed. Infection of CV-1 cells with this recombinant virus produced dengue virus structural proteins as well as the nonstructural protein NS1. These proteins were precipitated by specific antisera and exhibited the same molecular size and glycosylation patterns as authentic dengue virus proteins. Infection of cotton rats with the recombinant virus induced NS1 antibodies in 1 of 11 animals. However, an immune response to the PreM and E glycoproteins was not detected. A reduced level of gene expression was probably the reason for the limited serologic response to these dengue virus antigens.  相似文献   

14.
Casein kinase I (CKI) is a protein serine/threonine kinase that is highly conserved from plants to animals. It performs various functions in both the cytoplasm and nucleus, such as DNA repair, cell cycle, cytokinesis, vesicular trafficking, morphogenesis and circadian rhythm. CKI proteins contain a highly conserved kinase domain responsible for catalytic activity at the N-terminus and a highly diverse regulatory domain responsible for determining substrate specificity at the C-terminus. CKI-like protein has been identified in plants, including in rice, but its function and structure have not been reported. Here, we report the 2.0 ? crystal structure of the kinase domain of CKI-like protein from rice. Although the structure adopts the typical bi-lobal kinase architecture, the length and orientation of the glycine-rich ATP-binding motif are dynamic within the CKI family. A loop between α5 and α6 (the α5-α6 loop), which was previously not detected in the CKI family because of flexibility, was clearly detected in our structure. In addition, we identified a lipase as a substrate of CKI-like protein from rice. Phosphorylation of the lipase dramatically reduced its catalytic activity, suggesting that CKI may play a role in the regulation of lipase activity.  相似文献   

15.
The mechanism by which the 14-kDa fusion protein of vaccinia virus (VV) is anchored in the envelope of intracellular naked virions (INV) is not understood. In this investigation, we demonstrate that the 14-kDa protein interacts with another virus protein with an apparent molecular mass of 21 kDa. Microsequence analysis of the N terminus of the 21-kDa protein revealed that this protein is encoded by the VV A17L gene. The 21-kDa protein is processed from a 23-kDa precursor, by cleavage at amino acid position 16, at the consensus motif Ala-Gly-Ala, previously identified as a cleavage site for several VV structural proteins. The 21-kDa protein contains two large internal hydrophobic domains characteristic of membrane proteins. Pulse-chase analysis showed that within 1 h after synthesis, the 14-kDa protein forms a stable complex with the 21-kDa protein. Formation of the complex was not inhibited by rifampin, indicating that the interaction between these two proteins occurs prior to virion morphogenesis. Immunoprecipitation analysis of disrupted virions showed the presence of the 21-kDa protein in the viral particle. Release of the 14-kDa-21-kDa protein complex from INV required treatment with the nonionic detergent Nonidet P-40 and a reducing agent. The protein complex consisted of 14-kDa trimers and of 21-kDa dimers. Since the 14-kDa fusion protein lacks a signal sequence and a large hydrophobic domain characteristic of membrane proteins, our findings suggest that the 21-kDa protein serves to anchor the 14-kDa protein to the envelope of INV.  相似文献   

16.
17.
The structure of viral and cellular fos gene products and their association with a 39,000-dalton cellular protein (p39) were investigated by using antisera raised against synthetic peptides. The first peptide, termed M, corresponded to amino acids 127 to 152 of the v-fos sequence, a region which is identical in c-fos. The second peptide, termed V, corresponded to the nine C-terminal amino acids of v-fos; this region is not present in c-fos. Rabbit antisera were purified by affinity chromatography against their respective peptides before being used for immunoprecipitation. M peptide antisera precipitated p55v-fos and p55c-fos, whereas V peptide antisera precipitated only p55v-fos. This observation confirms the prediction from nucleotide sequence analysis that these proteins are distinct at their C termini. p39 was precipitated in association with p55v-fos and p55c-fos by M and V peptide antisera. However, V peptide antisera did not precipitate p39 from cells expressing p55c-fos, even though the presence of p39 in such cells was demonstrated with M peptide antisera. Denaturation of cell lysates completely abolished the precipitation of p39, whereas the precipitation of p55v-fos was unaffected. Taken together, the data demonstrate that p39 exists in a complex with p55.  相似文献   

18.
19.
In multicellular organisms, apoptosis is a powerful method of host defense against viral infection. Apoptosis is mediated by a cascade of caspase-family proteases that commit infected cells to a form of programmed cell death. Therefore, to replicate within host cells, viruses have developed various strategies to inhibit caspase activation. In the mitochondrial cell-death pathway, release of cytochrome c from mitochondria into the cytosol triggers assembly of the oligomeric apoptosome, resulting in dimerization and activation of the apical caspase-9 (C9), and in turn its downstream effector caspases, leading to apoptosis. We previously showed that the vaccinia virus-encoded Bcl-2-like protein, F1L, which suppresses cytochrome c release by binding Bcl-2 family proteins, is also a C9 inhibitor. Here, we identify a novel motif within the flexible N-terminal region of F1L that is necessary and sufficient for interaction with and inhibition of C9. Based on functional studies and mutagenesis, we developed an atomic model of the complex in which F1L inhibits C9 by engaging the active site in the reverse orientation with respect to substrate peptides, in a manner analogous to that of XIAP-mediated inhibition of caspases-3 and -7. These studies offer new insights into the mechanism of apoptosome inhibition by F1L as well as novel probes to understand the molecular bases of apoptosome regulation and turnover. They also suggest how the two distinct functionalities of F1L (inhibition of C9 and suppression of pro-apoptotic Bcl-2 family proteins) may operate in a cellular setting.  相似文献   

20.
A novel method has been developed to study the functional roles of individual vaccinia virus gene products that is neither limited by the possible essentiality of the target gene nor by the availability of conditional lethal mutants. The system utilises the E. coli lac repressor protein, the operator sequence to which it binds and the specific inducer IPTG. It allows the generation of recombinant viruses in which the expression of any chosen gene, and hence virus replication, can be externally controlled. In principle, this system is broadly applicable to the functional analysis of genes in any large DNA virus. This approach has demonstrated that the gene encoding the 14 kDa membrane protein of vaccinia virus is non-essential for the production of infectious intracellular virus particles, but essential for the envelopment of intracellular virions by Golgi membrane and for egress of mature extracellular viral particles. This is the first vaccinia virus protein shown to be specifically required for these processes. In vivo this system may prove useful as a means of attenuating recombinant vaccinia virus vaccines by preventing virus spread without reducing the amount of the foreign antigen expressed in each infected cell. Attenuation of other live virus vaccines may be developed in a similar way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号