首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major glycosylphosphatidylinositols (GPIs) transferred to protein in mammals and trypanosomes contain three mannoses. In Saccharomyces cerevisiae, however, the GPI transferred to protein bears a fourth, alpha1,2-linked Man on the alpha1,2-Man that receives the phosphoethanolamine (EthN-P) moiety through which GPIs become linked to protein. We report that temperature-sensitive smp3 mutants accumulate a GPI containing three mannoses and that smp3 is epistatic to the gpi11, gpi13, and gaa1 mutations, which normally result in the accumulation of Man(4)-GPIs, including the presumed substrate for the yeast GPI transamidase. The Smp3 protein, which is encoded by an essential gene, is therefore required for addition of the fourth Man to yeast GPI precursors. The finding that smp3 prevents the formation of the Man(4)-GPI that accumulates when addition of EthN-P to Man-3 is blocked in a gpi13 mutant suggests that the presence of the fourth Man is important for transfer of EthN-P to Man-3 of yeast GPIs. The Man(3)-GPI that accumulates in smp3 is a mixture of two dominant isoforms, one bearing a single EthN-P side branch on Man-1, the other with EthN-P on Man-2, and these isoforms can be placed in separate arms of a branched GPI assembly pathway. Smp3-related proteins are encoded in the genomes of Schizosaccharomyces pombe, Candida albicans, Drosophila melanogaster, and Homo sapiens and form a subgroup of a family of proteins, the other groups of which are defined by the Pig-B(Gpi10) protein, which adds the third GPI mannose, and by the Alg9 and Alg12 proteins, which act in the dolichol pathway for N-glycosylation. Because Man(4)-containing GPI precursors are normally formed in yeast and Plasmodium falciparum, whereas addition of a fourth Man during assembly of mammalian GPIs is rare and not required for GPI transfer to protein, Smp3p-dependent addition of a fourth Man represents a target for antifungal and antimalarial drugs.  相似文献   

2.
Yeast mcd4-174 mutants are blocked in glycosylphosphatidylinositol (GPI) anchoring of protein, but the stage at which GPI biosynthesis is interrupted in vivo has not been identified, and Mcd4p has also been implicated in phosphatidylserine and ATP transport. We report that the major GPI that accumulates in mcd4-174 in vivo is Man(2)-GlcN-(acyl-Ins)PI, consistent with proposals that Mcd4p adds phosphoethanolamine to the first mannose of yeast GPI precursors. Mcd4p-dependent modification of GPIs can partially be bypassed in the mcd4-174/gpi11 double mutant and in mcd4Delta; mutants by high-level expression of PIG-B and GPI10, which respectively encode the human and yeast mannosyltransferases that add the third mannose of the GPI precursor. Rescue of mcd4Delta; by GPI10 indicates that Mcd4p-dependent addition of EthN-P to the first mannose of GPIs is not obligatory for transfer of the third mannose by Gpi10p.  相似文献   

3.
A number of mammalian cell surface proteins are anchored by glycoinositol phospholipid (GPI) structures that are preassembled and transferred to them in the endoplasmic reticulum. The GPIs in these proteins contain linear ethanolamine (EthN)-phosphate (P)-6ManManManGlcN core glycan sequences bearing an additional EthN-P attached to the Man residue (Man 1) proximal to GlcN. The biochemical precursors of mammalian GPI anchor structures are incompletely characterized. In this study, putative [3H]Man-labeled GPI precursors were obtained by in vitro GDP-[3H] Man labeling of HeLa cell microsomes and by in vivo [3H]Man labeling of class B and F Thy-1 negative murine lymphoma mutants known to accumulate incomplete GPIs. The high performance liquid chromatography-purified in vitro and accumulated in vivo GPI products were structurally analyzed by nitrous acid deamination, hydrofluoric acid, trifluoroacetic acid hydrolysis, biosynthetic labeling, and exoglycosidase treatment. The data were consistent with a biosynthetic scheme in which Man and EthN-P are added stepwise to the developing glycan. Several additional points were demonstrated: 1) putative mammalian GPI precursors contain incomplete core glycans corresponding to those in previously characterized trypanosome GPI precursors. 2) The proximal EthN-P found in mature mammalian GPI anchor structures is added to Man 1 prior to incorporation of Man 2 and Man 3. 3) Glycans in the incomplete GPIs that accumulate in classes B and F lymphoma mutants consist of Man2- and Man3GlcN in which EthN-P is linked to Man 1. 4) Distal EthN-P linked to the 6-position of Man, characteristic of the complete GPI core, is found both in a subsequent GPI species with the glycan sequence EthN-P-6ManMan(EthN-P----)ManGlcN and in a more polar GPI product.  相似文献   

4.
Homologues of Gpi8p, Gaa1p, Gpi16p, Gpi17p, and Cdc91p are essential components of the GPI transamidase complex that adds glycosylphosphatidylinositols (GPIs 1) to newly synthesized proteins in the ER. In mammalian cells, these five subunits remain stably associated with each other in detergent. In yeast, we find no stable stoichiometric association of Gpi17p with the Gpi8p-Gpi16p-Gaa1p core in detergent extracts. Random and site-directed mutagenesis generated mutations in several highly conserved amino acids but did not yield nonfunctional alleles of Gpi17p and a saturating screen did not yield any dominant negative alleles of Gpi17p. Moreover, Gpi8p becomes unstable when any one of the other subunits is depleted, whereas Gpi17p is slightly affected only by the depletion of Gaa1p. These data suggest that yeast Gpi17p may be able to exert its GPI anchoring function without interacting in a stable and continuous manner with the other GPI-transamidase subunits. Shutting down ER-associated and vacuolar protein degradation pathways has no effect on the levels of Gpi17p or other transamidase subunits.  相似文献   

5.
Gpi8p and Gaa1p are essential components of the GPI transamidase that adds glycosylphosphatidylinositols (GPIs) to newly synthesized proteins. After solubilization in 1.5% digitonin and separation by blue native PAGE, Gpi8p is found in 430-650-kDa protein complexes. These complexes can be affinity purified and are shown to consist of Gaa1p, Gpi8p, and Gpi16p (YHR188c). Gpi16p is an essential N-glycosylated transmembrane glycoprotein. Its bulk resides on the lumenal side of the ER, and it has a single C-terminal transmembrane domain and a small C-terminal, cytosolic extension with an ER retrieval motif. Depletion of Gpi16p results in the accumulation of the complete GPI lipid CP2 and of unprocessed GPI precursor proteins. Gpi8p and Gpi16p are unstable if either of them is removed by depletion. Similarly, when Gpi8p is overexpressed, it largely remains outside the 430-650-kDa transamidase complex and is unstable. Overexpression of Gpi8p cannot compensate for the lack of Gpi16p. Homologues of Gpi16p are found in all eucaryotes. The transamidase complex is not associated with the Sec61p complex and oligosaccharyltransferase complex required for ER insertion and N-glycosylation of GPI proteins, respectively. When GPI precursor proteins or GPI lipids are depleted, the transamidase complex remains intact.  相似文献   

6.
Glycosylphosphatidylinositols (GPIs) are attached to the C termini of some glycosylated secretory proteins, serving as membrane anchors for many of those on the cell surface. Biosynthesis of GPIs is initiated by the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol. This reaction is carried out at the endoplasmic reticulum (ER) by an enzyme complex called GPI-N-acetylglucosaminyltransferase (GPI-GlcNAc transferase). The human enzyme has six known subunits, at least four of which, GPI1, PIG-A, PIG-C, and PIG-H, have functional homologs in the budding yeast Saccharomyces cerevisiae. The uncharacterized yeast gene YDR437w encodes a protein with some sequence similarity to human PIG-P, a fifth subunit of the GPI-GlcNAc transferase. Here we show that Ydr437w is a small but essential subunit of the yeast GPI-GlcNAc transferase, and we designate its gene GPI19. Similar to other mutants in the yeast enzyme, temperature-sensitive gpi19 mutants display cell wall defects and hyperactive Ras phenotypes. The Gpi19 protein associates with the yeast GPI-GlcNAc transferase in vivo, as judged by coimmuneprecipitation with the Gpi2 subunit. Moreover, conditional gpi19 mutants are defective for GPI-GlcNAc transferase activity in vitro. Finally, we present evidence for the topology of Gpi19 within the ER membrane.  相似文献   

7.
Biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins involves the action of a GPI trans-amidase, which replaces the C-terminal GPI signal sequence (GPI-SS) of the primary translation product with a preformed GPI lipid. The transamidation depends on a complex of four proteins, Gaa1p, Gpi8p, Gpi16p and Gpi17p. Although the GPI anchoring pathway is conserved throughout the eukaryotic kingdom, it has been reported recently that the GPI-SS of human placental alkaline phosphatase (hPLAP) is not recognized by the yeast transamidase, but is recognized in yeast that contain the human Gpi8p homologue. This finding suggests that Gpi8p is intimately involved in the recognition of GPI precursor proteins and may also be responsible for the subtle taxon-specific differences in transamidase specificity that sometimes prevent the efficient GPI anchoring of heterologously expressed GPI proteins. Here, we confirm that the GPI signal sequence of hPLAP is indeed not recognized by the yeast GPI-anchoring machinery. However, in our hands, GPI attachment cannot be restored by the co-expression of human Gpi8p in yeast cells under any circumstances.  相似文献   

8.
MCD4 and GPI7 are important for the addition of glycosylphosphatidylinositol (GPI) anchors to proteins in the yeast Saccharomyces cerevisiae. Mutations in these genes lead to a reduction of GPI anchoring and cell wall fragility. Gpi7 mutants accumulate a GPI lipid intermediate of the structure Manalpha1-2[NH(2)-(CH(2))(2)-PO(4)-->]Manalpha1-2Manalpha 1-6[NH(2)-(C H(2))(2)-PO(4)-->]Manalpha1-4GlcNalpha1-6[acyl-->]inositol-P O(4)-lipi d, which, in comparison with the complete GPI precursor lipid CP2, lacks an HF-sensitive side chain on the alpha1-6-linked mannose. In contrast, mcd4-174 accumulates only minor amounts of abnormal GPI intermediates. Here we investigate whether YLL031c, an open reading frame predicting a further homologue of GPI7 and MCD4, plays any role in GPI anchoring. YLL031c is an essential gene. Its depletion results in a reduction of GPI anchor addition to GPI proteins as well as to cell wall fragility. YLL031c-depleted cells accumulate GPI intermediates with the structures Manalpha1-2Manalpha1-2Manalpha1-6[NH(2)-(CH(2))(2)-PO( 4)-->]Manalpha1 -4GlcNalpha1-6[acyl-->]inositol-PO(4)-lipid and Manalpha1-2Manalpha1-2Manalpha1-6Manalpha1-4G lcNalpha1-6[acyl-->]inos itol-PO(4)-lipid. Subcellular localization studies of a tagged version of YLL031c suggest that this protein is mainly in the ER, in contrast to Gpi7p, which is found at the cell surface. The data are compatible with the idea that YLL031c transfers the ethanolaminephosphate to the inner alpha1-2-linked mannose, i.e. the group that links the GPI lipid anchor to proteins, whereas Mcd4p and Gpi7p transfer ethanolaminephosphate onto the alpha1-4- and alpha1-6-linked mannoses of the GPI anchor, respectively.  相似文献   

9.
In humans and Saccharomyces cerevisiae the free glycosylphosphatidylinositol (GPI) lipid precursor contains several ethanolamine phosphate side chains, but these side chains had been found on the protein-bound GPI anchors only in humans, not yeast. Here we confirm that the ethanolamine phosphate side chain added by Mcd4p to the first mannose is a prerequisite for the addition of the third mannose to the GPI precursor lipid and demonstrate that, contrary to an earlier report, an ethanolamine phosphate can equally be found on the majority of yeast GPI protein anchors. Curiously, the stability of this substituent during preparation of anchors is much greater in gpi7Delta sec18 double mutants than in either single mutant or wild type cells, indicating that the lack of a substituent on the second mannose (caused by the deletion of GPI7) influences the stability of the one on the first mannose. The phosphodiester-linked substituent on the second mannose, probably a further ethanolamine phosphate, is added to GPI lipids by endoplasmic reticulum-derived microsomes in vitro but cannot be detected on GPI proteins of wild type cells and undergoes spontaneous hydrolysis in saline. Genetic manipulations to increase phosphatidylethanolamine levels in gpi7Delta cells by overexpression of PSD1 restore cell growth at 37 degrees C without restoring the addition of a substituent to Man2. The three putative ethanolamine-phosphate transferases Gpi13p, Gpi7p, and Mcd4p cannot replace each other even when overexpressed. Various models trying to explain how Gpi7p, a plasma membrane protein, directs the addition of ethanolamine phosphate to mannose 2 of the GPI core have been formulated and put to the test.  相似文献   

10.
Glycosylphosphatidylinositol (GPI) anchors are attached to newly synthesized proteins in the ER by a transamidation reaction during which a C-terminal GPI attachment signal is replaced by a preformed GPI precursor lipid. This reaction depends on GAA1 and GPI8, the latter belonging to a novel cysteine protease family. Homologies between this family and other Cys proteinases, such as caspases, pointed to Cys199 and His157 as potential active site residues. Indeed, gpi8 alleles mutated at Cys199 or His157 are nonfunctional, i.e., they are unable to suppress the lethality of Deltagpi8 mutants. The overexpression of these nonfunctional alleles in wild-type cells leads to the accumulation of the free GPI precursor lipid CP2, delays the maturation of the GPI protein Gas1p, and arrests cell growth. The dominant negative effect of the Cys199 mutant cannot be overcome by the simultaneous overexpression of Gaa1p. Most GPI8 alleles mutated in other conserved regions of the protein can complement the growth defect of Deltagpi8, but nevertheless accumulate CP2. CP2 accumulation, a delay in Gas1p maturation and a slowing of cell growth can also be observed when Gpi8p is depleted to 50% of its normal level in wild-type cells. The dominant negative effect of nonfunctional and partially functional mutant alleles can best be explained by assuming that Gpi8p works as part of a homo- or heteropolymeric complex.  相似文献   

11.
Yeast and human glycosylphosphatidylinositol (GPI) precursors differ in the extent to which a fourth mannose is present as a side branch of the third core mannose. A fourth mannose addition to GPIs has scarcely been detected in studies of mammalian GPI synthesis but is an essential step in the Saccharomyces cerevisiae pathway. We report that human SMP3 encodes a functional homolog of the yeast Smp3 GPI fourth mannosyl-transferase. Expression of hSMP3 in yeast complements growth and biochemical defects of smp3 mutants and permits in vivo mannosylation of trimannosyl (Man(3))-GPIs. Immunolocalization shows that hSmp3p resides in the endoplasmic reticulum in human cells. Northern analysis of mRNA from human tissues and cell lines indicates that hSMP3 is expressed in most tissues, with the highest levels in brain and colon, but its mRNA is nearly absent from cultured human cell lines. Correspondingly, increasing expression of hSMP3 in cultured HeLa cells causes abundant formation of three putative tetramannosyl (Man(4))-GPIs. Our data indicate that hSmp3p functions as a mannosyltransferase that adds a fourth mannose to certain Man(3)-GPIs during biosynthesis of the human GPI precursor, and suggest it may do so in a tissue-specific manner.  相似文献   

12.
Eukaryotic proteins can be post-translationally modified with a glycosylphosphatidylinositol (GPI) membrane anchor. This modification reaction is catalyzed by GPI transamidase (GPI-T), a multimeric, membrane-bound enzyme. Gpi8p, an essential component of GPI-T, shares low sequence similarity with caspases and contains all or part of the enzyme's active site [U. Meyer, M. Benghezal, I. Imhof, A. Conzelmann, Biochemistry 39 (2000) 3461-3471]. Structural predictions suggest that the soluble portion of Gpi8p is divided into two domains: a caspase-like domain that contains the active site machinery and a second, smaller domain of unknown function. Based on these predictions, we evaluated a soluble truncation of Gpi8p (Gpi8(23-306)). Dimerization was investigated due to the known proclivity of caspases to homodimerize; a Gpi8(23-306) homodimer was detected by native gel and confirmed by mass spectrometry and N-terminal sequencing. Mutations at the putative caspase-like dimerization interface disrupted dimer formation. When combined, these results demonstrate an organizational similarity between Gpi8p and caspases.  相似文献   

13.
Yeast Gpi8p is essential for GPI anchor attachment onto proteins.   总被引:17,自引:2,他引:15       下载免费PDF全文
Glycosylphosphatidylinositol (GPI) anchors are added onto newly synthesized proteins in the ER. Thereby a putative transamidase removes a C-terminal peptide and attaches the truncated protein to the free amino group of the preformed GPI. The yeast mutant gpi8-1 is deficient in this addition of GPIs to proteins. GPI8 encodes for an essential 47 kDa type I membrane glycoprotein residing on the luminal side of the ER membrane. GPI8 shows significant homology to a novel family of vacuolar plant endopeptidases one of which is supposed to catalyse a transamidation step in the maturation of concanavalin A and acts as a transamidase in vitro. Humans have a gene which is highly homologous to GPI8 and can functionally replace it.  相似文献   

14.
Fabre AL  Orlean P  Taron CH 《The FEBS journal》2005,272(5):1160-1168
Addition of the second mannose is the only obvious step in glycosylphosphatidylinositol (GPI) precursor assembly for which a responsible gene has not been discovered. A bioinformatics-based strategy identified the essential Saccharomyces cerevisiae Ybr004c protein as a candidate for the second GPI alpha-mannosyltransferase (GPI-MT-II). S. cerevisiae cells depleted of Ybr004cp have weakened cell walls and abnormal morphology, are unable to incorporate [3H]inositol into proteins, and accumulate a GPI intermediate having a single mannose that is likely modified with ethanolamine phosphate. These data indicate that Ybr004cp-depleted yeast cells are defective in second mannose addition to GPIs, and suggest that Ybr004cp is GPI-MT-II or an essential subunit of that enzyme. Ybr004cp homologues are encoded in all sequenced eukaryotic genomes, and are predicted to have 8 transmembrane domains, but show no obvious resemblance to members of established glycosyltransferase families. The human Ybr004cp homologue can substitute for its S. cerevisiae counterpart in vivo.  相似文献   

15.
Many eukaryotic surface glycoproteins, including the variant surface glycoproteins (VSGs) of Trypanosoma brucei, are synthesized with a carboxyl-terminal hydrophobic peptide extension that is cleaved and replaced by a complex glycosylphosphatidylinositol (GPI) membrane anchor within 1-5 min of the completion of polypeptide synthesis. We have reported the purification and partial characterization of candidate precursor glycolipids (P2 and P3) from T. brucei. P2 and P3 contain ethanolamine-phosphate-Man alpha 1-2Man alpha 1-6Man alpha 1-GlcN linked glycosidically to an inositol residue, as do all the GPI anchors that have been structurally characterized. The anchors on mature VSGs contain a heterogenously branched galactose structure attached alpha 1-3 to the mannose residue adjacent to the glucosamine. We report the identification of free GPIs that appear to be similarly galactosylated. These glycolipids contain diacylglycerol and alpha-galactosidase-sensitive glycan structures which are indistinguishable from the glycans derived from galactosylated VSG GPI anchors. We discuss the relevance of these galactosylated GPIs to the biosynthesis of VSG GPI anchors.  相似文献   

16.
Many eukaryotic cell-surface proteins are post-translationally modified by a glycosylphosphatidylinositol (GPI) moiety that anchors them to the cell membrane. The biosynthesis of GPI anchors is initiated in the endoplasmic reticulum by transfer of GlcNAc from UDP-GlcNAc to phosphatidylinositol. This reaction is catalyzed by GPI GlcNAc transferase, a multisubunit complex comprising the catalytic subunit Gpi3/PIG-A as well as at least five other subunits, including the hydrophobic protein Gpi2, which is essential for the activity of the complex in yeast and mammals, but the function of which is not known. To investigate the role of Gpi2, we exploited Trypanosoma brucei (Tb), an early diverging eukaryote and important model organism that initially provided the first insights into GPI structure and biosynthesis. We generated insect-stage (procyclic) trypanosomes that lack TbGPI2 and found that in TbGPI2-null parasites, (i) GPI GlcNAc transferase activity is reduced, but not lost, in contrast with yeast and human cells, (ii) the GPI GlcNAc transferase complex persists, but its architecture is affected, with loss of at least the TbGPI1 subunit, and (iii) the GPI anchors of procyclins, the major surface proteins, are underglycosylated when compared with their WT counterparts, indicating the importance of TbGPI2 for reactions that occur in the Golgi apparatus. Immunofluorescence microscopy localized TbGPI2 not only to the endoplasmic reticulum but also to the Golgi apparatus, suggesting that in addition to its expected function as a subunit of the GPI GlcNAc transferase complex, TbGPI2 may have an enigmatic noncanonical role in Golgi-localized GPI anchor modification in trypanosomes.  相似文献   

17.
Gpi7 was isolated by screening for mutants defective in the surface expression of glycosylphosphatidylinositol (GPI) proteins. Gpi7 mutants are deficient in YJL062w, herein named GPI7. GPI7 is not essential, but its deletion renders cells hypersensitive to Calcofluor White, indicating cell wall fragility. Several aspects of GPI biosynthesis are disturbed in Deltagpi7. The extent of anchor remodeling, i.e. replacement of the primary lipid moiety of GPI anchors by ceramide, is significantly reduced, and the transport of GPI proteins to the Golgi is delayed. Gpi7p is a highly glycosylated integral membrane protein with 9-11 predicted transmembrane domains in the C-terminal part and a large, hydrophilic N-terminal ectodomain. The bulk of Gpi7p is located at the plasma membrane, but a small amount is found in the endoplasmic reticulum. GPI7 has homologues in Saccharomyces cerevisiae, Caenorhabditis elegans, and man, but the precise biochemical function of this protein family is unknown. Based on the analysis of M4, an abnormal GPI lipid accumulating in gpi7, we propose that Gpi7p adds a side chain onto the GPI core structure. Indeed, when compared with complete GPI lipids, M4 lacks a previously unrecognized phosphodiester-linked side chain, possibly an ethanolamine phosphate. Gpi7p contains significant homology with phosphodiesterases suggesting that Gpi7p itself is the transferase adding a side chain to the alpha1,6-linked mannose of the GPI core structure.  相似文献   

18.
Glycosylphosphatidylinositol (GPI) anchors of mammals as well as yeast contain ethanolaminephosphate side chains on the alpha1-4- and the alpha1-6-linked mannoses of the anchor core structure (protein-CO-NH-(CH(2))(2)-PO(4)-6Manalpha1-2Manalpha1-6Manalpha1-4GlcNH(2)-inositol-PO(4)-lipid). In yeast, the ethanolaminephosphate on the alpha1-4-linked mannose is added during the biosynthesis of the GPI lipid by Mcd4p. MCD4 is essential because Gpi10p, the mannosyltransferase adding the subsequent alpha1-2-linked mannose, requires substrates with an ethanolaminephosphate on the alpha1-4-linked mannose. The Gpi10p ortholog of Trypanosoma brucei has no such requirement. Here we show that the overexpression of this ortholog rescues mcd4Delta cells. Phenotypic analysis of the rescued mcd4Delta cells leads to the conclusion that the ethanolaminephosphate on the alpha1-4-linked mannose, beyond being an essential determinant for Gpi10p, is necessary for an efficient recognition of GPI lipids and GPI proteins by the GPI transamidase for the efficient transport of GPI-anchored proteins from the endoplasmic reticulum to Golgi and for the physiological incorporation of ceramides into GPI anchors by lipid remodeling. Furthermore, mcd4Delta cells have a marked defect in axial bud site selection, whereas this process is normal in gpi7Delta and gpi1. This also suggests that axial bud site selection specifically depends on the presence of the ethanolaminephosphate on the alpha1-4-linked mannose.  相似文献   

19.
G Sipos  A Puoti    A Conzelmann 《The EMBO journal》1994,13(12):2789-2796
Glycosylphosphatidylinositol (GPI) anchoring of membrane proteins occurs through two distinct steps, namely the assembly of a precursor glycolipid and its subsequent transfer onto newly synthesized proteins. To analyze the structure of the yeast precursor glycolipid we made use of the pmi40 mutant that incorporates very high amounts of [3H]mannose. Two very polar [3H]mannose-labeled glycolipids named CP1 and CP2 qualified as GPI precursor lipids since their carbohydrate head group, Man alpha 1,2(X-->PO4-->6)Man alpha 1,2Man alpha 1,6Man alpha-GlcN-inositol (with X most likely being ethanolamine) comprises the core structure which is common to all GPI anchors described so far. CP1 predominates in cells grown at 24 degrees C whereas CP2 is induced by stress conditions. The apparent structural identity of the head groups suggests that CP1 and CP2 contain different lipid moieties. The lipid moieties of both CP1 and CP2 can be removed by mild alkaline hydrolysis although the protein-bound GPI anchors made by the pmi40 cells under identical labeling conditions contain mild base resistant ceramides. These findings imply that the ceramide moiety found on the majority of yeast GPI anchored proteins is added through a lipid remodeling step that occurs after the addition of the GPI precursor glycolipids to proteins.  相似文献   

20.
Glycosylphosphatidylinositol (GPI) anchoring of proteins to the plasma membrane is a common mechanism utilized by all eukaryotes including mammals, yeast, and the Trypanosoma brucei parasite. We have previously shown that in mammals phenanthroline (PNT) blocks the attachment of phosphoethanolamine (P-EthN) groups to mannose residues in GPI anchor intermediates, thus preventing the synthesis of mammalian GPI anchors. Therefore, PNT is likely to inhibit GPI-phosphoethanolamine transferases (GPI-PETs). Here we report that in yeast, PNT also inhibits the synthesis of the GPI anchor as well as GPI-anchored proteins. Interestingly, the mechanism of PNT inhibition of GPI synthesis is different from that of YW3548, another putative GPI-PET inhibitor. In contrast to mammals and yeast, the synthesis of GPIs in T. brucei is not affected by PNT. Our results indicate that the T. brucei GPI-PET could be a potential target for antiparasitic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号