首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It was shown that excitation of high- and low-threshold superior laryngeal afferents triggers reflexes of varying complexity in a considerable proportion of non-respiratory neurons during experiments on cats anesthetized by Nembutal involving stimulation-induced expiration reflex. Systemic alterations in background firing activity were noted during this reflex in "respiratory" neurons; reflex reaction setting in as a result of low-threshold laryngeal afferent activation was also recorded in 22.4% of this group. Oligo- and polysynaptic excitatory connections were found between low-threshold laryngeal afferents and inspiratory beta neurons, P-cells, and laryngeal muscle motoneurons as opposed to inhibitory connections with inspiratory gammaneurons. This article discusses involvement of the neurons investigated in mechanisms of inspiratory inhibition, closure of the vocal chords, and adaptive decline in breathing rate occurring during expiration reflex.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 670–680, September–October, 1990.  相似文献   

2.
Bulbar locomotor and inhibitory sites were located in the pons of mesencephalic decerebellate cats. Rhythmic stimulation of locomotor sites through microelectrodes at the rate of 60 Hz elicited stepping movements in the forelimbs which were halted when the inhibitory sites were rhythmically stimulated. Neuronal response was elicited by single or paired stimulation of locomotor sites at the rate of 1.5 Hz or by applying a series of 2–4 stimuli spaced 2 msec apart to the inhibitory site. Medial neurons generated synaptic responses (postsynaptic potentials or action potentials) to stimulation of the inhibitory site twice as frequently as when the locomotor site was stimulated. Responses in lateral neurons, however, occurred twice as frequently to stimulation of the locomotor site, while IPSP were only observed half as often as EPSP in neurons of both groups. In neurons excited by stimulation of the locomotor site, stimulation of the inhibitory site did not normally produce IPSP. Possible mechanisms underlying the halt of locomotion occurring in response to stimulation of the inhibitory site are discussed.Information Transmission Institute, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 18, No. 4, pp. 525–533, July–August, 1986.  相似文献   

3.
Synaptic response to single (2 Hz) and regular (30–50 Hz) stimuli applied to the pontine inhibitory site were recorded in decerebrate cats. A change to regular stimulation was usually accompanied by a rise in the firing index of synaptic discharges and raised amplitude of inhibitory and (to a lesser extent) excitatory postsynaptic potentials. Suppression of background spike activity was observed in some neurons. It was deduced that frequency potentiation makes a considerable contribution to the functional effect of stimulating the inhibitory site, i.e., terminating evoked locomotion.Institute for Information Transmission Studies, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 20, No. 2, pp. 172–180, March–April, 1988.  相似文献   

4.
5.
Synaptic response to regular stimulation of midbrain and bulbar locomotor sites (LS) and a pontine inhibitory site (IS) was recorded in medial and lateral bulbar neurons in cats (mesencephalic decerebellate preparation). Excitatory post-synaptic potentials (PSP) and discharges were usually noted in medial neurons; mixed PSP also occurred when stimulating the IS. Almost 50% of lateral and over 25% of medial neurons showed a change in background firing rate, failing to generate response time-locked to stimulus. Medial neurons producing a response time-locked to the stimulus showed equal sensitivity to stimulation of midbrain and bulbar LT and very little reaction to IS stimulation. Medial neurons with a response not time-locked to stimuli together with lateral neurons were most receptive to input from the bulbar LS, less sensitive to stimulation of the midbrain LS, and least responsive of all to IS stimulation. Convergence between influences from midbrain and bulbar LS was the same in neurons of all populations. The part played by different neuronal populations in initiation and cessation of locomotion is discussed.Institute for Research into Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 3, pp. 297–306, May–June, 1991.  相似文献   

6.
7.
The effect of enflurane on the firing activity (spikes/sec) of the inspiratory neurons of the dorsal respiratory group (DRG) of the medulla oblongata was studied in decerebrate, paralyzed, mechanically ventilated cats before and after bilateral cervical vagotomy. Inspiratory neuronal activity, phrenic neurogram, arterial blood pressure, tracheal pressure, and end tidal CO2 concentration were recorded. Cells whose firing activity was in phase with that of the phrenic nerve were considered inspiratory neurons. Administration of 1 and 2% enflurane in oxygen produced gradual, significant, and dose-dependent depression of the cell activity with cervical vagi either intact or severed. Recovery of the cell activity occurred after termination of enflurane administration. In cats with intact vagi, 10 min after introduction of 1 and 2% enflurane, the cell activity (mean +/- SE) expressed as percentage of the control was 70 +/- 6% (P less than 0.05) and 48 +/- 5% (P less than 0.01), respectively. Bilateral cervical vagotomy did not affect the degree of cell depression due to enflurane. Hypercarbia induced by inhalation of 5% CO2 increased cell activity, but it did not block enflurane-induced cell depression, although it reduced it. It may be concluded that enflurane depresses the activity of the inspiratory neurons of the DRG. The results also suggest that the respiratory depressant effect of enflurane has a central component and that the DRG region may serve as a site to mediate the enflurane-induced respiratory depression.  相似文献   

8.
Transmission of impulsation from the visceral nerves to the bulbar reticular formation in the cat is effected by two systems of conductive pathways. The first (fast-conducting) is formed by the spinoreticular pathways of the lateral funiculi. This system activates reticular neurons with a latent period of 8–10 msec. The second system is made up of the polysynaptic pathways of the ventrolateral and ventral funiculi. Activation of reticular neurons through this pathway requires 10–20 msec or longer. Transection of the dorsal funiculi and the dorsal portion of the lateral funiculi causes no material changes in the synaptic activation of reticular neurons by visceral nerves.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 2, pp. 177–185, September–October, 1969.  相似文献   

9.
10.
11.
12.
We determined the temporal changes in effectiveness of inspiratory-shortening expiratory-prolonging stimulus trains delivered in the region of the nucleus parabrachialis medialis and compared the responses to those observed during trains delivered to the vagus in the same animals (pentobarbital, sodium-anesthetized paralyzed cats). The inspiratory inhibitory effect of the pontine stimulus was assessed from the effect the stimulus has on threshold for terminating inspiration. Stimulus effect increased gradually, reached a peak at 0.2-0.4 s, and declined thereafter. The time of occurrence of peak effect was different from that observed in the course of vagal stimulus trains. With long stimulus trains (19-40 s), the initial effect on inspiratory duration (TI) (i.e., shortening) rapidly subsided and, in six of eight animals, was replaced by TI prolongation. The initial effect on expiratory duration (TE) (i.e., prolongation) also gradually declined with time but TE remained above control throughout. The time constant of adaptation was very similar with vagal and pontine stimulus trains (12.2 and 11.0 s, respectively), but the gain of the adapting response was much more pronounced with pontine stimuli, resulting in a paradoxical effect while stimulation continued. We conclude that the response to pontine stimuli, as with vagal stimuli, displays both integrative and adaptive characteristics. The similarity of the time constants for vagal and pontine adaptation responses suggests that these two inputs share common processing pathways.  相似文献   

13.
Acute experiments on cats anesthetized with nembutal, using a microelectrode technique, have demonstrated that pinching of the coronary artery involves changes in the patterns of impulse activity in all types of bulbar respiratory neurons, up to the appearance of ischemic shifts on the ECG. Progression of myocardial ischemia is paralleled by changes in all the bulbar respiratory neurons.  相似文献   

14.
Pan BX  Wu ZH 《生理学报》2001,53(2):89-92
在新生大鼠延髓脑片上同步记录舌下神经根和双相呼气神经元/吸气神经元单位的放电活动,并在灌流的改良Kredbs液中先后加以非NMDA受体的激动剂KA和拮抗剂DNQX,观察对神经元单位放电的影响,以进一步探讨非NMDA受体在对双相呼气神经元之间交互兴奋和吸气神经元兴奋性突触输入中的作用,结果表明,使用非NMDA受体激动剂KA以后,双相呼气神经元的放电频率和蜂频率都明显增大,吸气神经元中期放电的频率和非NMDA受体激动剂KA以后,双相呼气神经元的放电频率和峰频率都明显增大,吸气神经元中期放电的频率和峰频率也显著增大,而早期和晚期放电的频率无明显改变,用相应拮抗剂以后,上述效应明显被抑制,结果提示,非NMDA受体参与了双相呼气神经元之间的交互兴奋作用,并且也介导了吸气神经元的兴奋性突触输入/  相似文献   

15.
16.
17.
18.
19.
20.
Extracellular recordings were made of changes in the firing pattern of 74 respiratory neurons in 23 cats anesthetized with Nembutal evoked by blowing atmospheric air into the nose or through an isolated segment of trachea. Respiratory unit (RU) responses were compared with accompanying changes in the activity of inspiratory and expiratory neuromotor units (NMUs) and the intratracheal pressure. These procedures were accompanied by changes in the frequency, depth, and rhythm of respiration and RU and NMU activity was activated or inhibited; RUs of all types responded to these stimuli. Responding RUs were found in various structures of the medullary respiratory center. Most RUs responded differently to stimulation of the air passages and inflation of the lungs. It is concluded that afferent impulses from the nose and trachea spread to all groups of bulbar RUs responsible for generating respiratory movements. This wide extent of the afferent projections of the air passages in structures of the respiratory center could play an important role both in defensive respiratory responses and in the regulation of eupnea.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 3, No. 6, pp. 620–630, November–December, 1971.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号