首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquatic invertebrates are essential for duckling growth and development. We present results on the trophic status and dietary analysis of Bufflehead (Bucephala albeola) ducklings from the boreal breeding grounds of western Canada. We estimated dietary preference by comparing invertebrates found in Bufflehead diets to those identified in standardized dip net samples at their wetland feeding sites. Stable isotope ratios of Bufflehead and their prey were used as a second estimator of trophic position. Bufflehead ducklings preferentially foraged for larval Dytiscidae (predaceous diving beetles; 46% of total dietary biomass), Zygoptera larvae (damselflies; 14%) and non-Dytiscidae adult Coleoptera (5%; mainly Haliplidae). Results from stable isotope analyses supported these results; the separation between primary and secondary invertebrate consumers and ducklings was significant for all possible contrasts when considering nitrogen isotope ratios (Tukey HSD; P < 0.001). We iteratively explored all possible combinations of δ15N and δ13C data to generate a proportional range over which each food source may contribute to Bufflehead stable isotope signatures; these results suggested larval Zygoptera and larval Dytiscidae figure prominently in diets when accounting for isotope fractionation. The incorporation of prey availability into the metric of dietary preference, as opposed to the tabulation of ingested items alone, reduces the importance of invertebrate groups such as adult Dytiscidae as highlighted in previous studies.  相似文献   

2.
The natural abundance variations in carbon and nitrogen stable isotope ratios in a population of the earthworm Aporrectodea longa, a species known to feed on both soil and plant litter, is reported in this paper. Worms were collected from a small land area of an old white clover field and body tissue and mucus were analyzed separately. The range of isotopic values was small, but patterns of variation were not random. Tissue carbon and nitrogen isotope ratios were significantly higher in adult than in juvenile A. longa and tissue nitrogen isotope ratios tended to increase with increasing biomass of individuals. Further, carbon and nitrogen isotope ratios were positively correlated in both tissue and mucus. Possible causes of the observed patterns, including physiological effects, body composition and assimilation of C and N from different plant, soil and microbial sources are discussed. It is concluded that the causes of natural variability in isotopic composition must be understood and validated experimentally before natural abundance stable isotope methods can be used for the analysis of trophic relations among detritivorous soil invertebrates.  相似文献   

3.
On the North Pacific feeding grounds, humpback whales (Megaptera novaeangliae) are recovering from commercial whaling at a rapid rate (6.8%). The potential effect that this recovery will have on trophic dynamics involving these predators is currently unknown. To better elucidate complex trophic dynamics, variability in diet composition of apex predators on their respective feeding grounds needs to be understood. Thus, we explored the diet composition of two defined subaggregations of humpback whales of the Kodiak Archipelago population (“North,” “South”) using stable carbon (δ13C) and nitrogen (δ15N) isotope ratios of humpback whale skin and regional prey samples in Bayesian dietary mixing models. Humpback whales in the “North” region consumed proportionally more fish, dominated by capelin (Mallotus villosus), whereas, whales in the “South” region consumed predominantly krill. The difference in diet composition appears to reflect regional differences in prey availability. Thus, regional variability in diet composition by humpback whales may have disproportionate impacts on prey resources of sympatric predators depending on available prey biomass. As a result, we suggest fine‐scale studies of apex predator diets are needed to better model trophic dynamics with accuracy.  相似文献   

4.
Down feathers and regurgitant were collected from nestling wood storks (Mycteria americana) from two inland and two coastal breeding colonies in Georgia. The stable isotopic ratios of carbon (13C/12C) and nitrogen (15N/14N) in these materials were analyzed to gain insights into the natal origins of juvenile storks and the foraging activities of adults. Down feathers differed in '13C between inland and coastal colonies, having average isotopic values that reflected the sources of carbon fixed in biomass at the base of the food web. Feathers from the inland colonies differed between colonies in '15N, while those from the coastal colonies did not. These patterns primarily reflected the foraging activities of parent storks, with individuals capturing differing percentages of prey of distinct trophic status at each colony. Collectively, the carbon and nitrogen isotopic signatures of feather keratin were used to distinguish nestlings from each colony, except for instances where storks from different colonies foraged in common wetlands. The stable isotopic composition of food items in regurgitant was used to reconstruct the trophic structure of the ecosystems in which wood storks foraged. Predicted foraging activities based on the isotopic composition of keratin were generally consistent with the percentage of prey types (freshwater vs. saltwater and lower trophic level vs. upper trophic level consumer) observed in regurgitant, except for the coastal colony at St. Simons Island, where the '13C of feathers strongly suggested that freshwater prey were a significant component of the diet. This inconsistency was resolved by aerial tracking of adults during foraging excursions using a fixed-wing aircraft. Observed foraging activities supported interpretations based on the stable isotope content of feathers, suggesting that the latter provided a better record of overall foraging activity than regurgitant analysis alone. Observed foraging patterns were compared to the predictions of a statistical model that determined habitat utilization based on habitat availability using a geographic information system (GIS) database. Observed foraging activities and those predicted from feathers both suggested that some adult storks preferred to feed their young freshwater prey, even when saltwater resources were more accessible in the local environment. This conclusion supports the contention that wood stork populations are sensitive to changes in the distribution of freshwater habitats along the southeastern coastal plain of the United States.  相似文献   

5.
1. We examined how ontogenetic development in a calanoid copepod from the High Arctic, Limnocalanus macrurus, influenced its elemental composition (carbon, nitrogen, phosphorus), methylmercury (MeHg) content and stable nitrogen and carbon isotope ratios in populations from nine lakes. 2. Population structure explained 33–83% of among‐lake variation in the C, N and P composition of the biomass. Biomass dominated by early‐stage copepodites had a greater P content, which declined in more mature populations, as indicated by significant changes in % P and the molar N/P ratio. Carbon and lipid contents increased with the proportion of adult biomass. Copepod populations sampled in warmer waters had a greater proportion of adult biomass, and water temperature was the most significant environmental variable explaining elemental composition. 3. A δ15N enrichment of 3.3 ± 1.0‰ was associated with copepodite development. Gut contents of L. macrurus showed no evidence of animal (invertebrate) prey, indicating no change in trophic position. 4. Unexpectedly, MeHg concentration was negatively correlated with the proportion of adult biomass. However, this trend was not significant after correcting MeHg concentration to non‐lipid dry mass, suggesting a lipid dilution effect in more mature copepods. Lake surface area, rather than ontogeny, best explained MeHg concentrations in L. macrurus. 5. Ontogenetic influences on chemical constituents of this common Arctic copepod, particularly δ15N ratios and uncorrected MeHg concentrations, highlight the relevance of developmental processes for studies of food webs and mercury in species‐poor High Arctic lakes.  相似文献   

6.
David A. Spiller 《Oecologia》1992,90(4):457-466
Summary I studied the relationship between prey consumption and colony size in the orb spiderPhiloponella semiplumosa. Observations of unmanipulated colonies showed that prey biomass per juvenile spider was positively correlated with colony size, indicating that prey consumption was highest in the largest colonies observed. In contrast, the relationship between prey biomass per adult female and colony size was curvilinear; prey consumption tended to be highest in intermediatesized colonies. Adult female cephalothorax width was positively correlated with colony size. Number of egg sacs per adult female tended to be highest in intermediate-sized colonies. Prey biomass per juvenile was lower in experimentally reduced colonies than in large control colonies. Aerial-arthropod abundance was not correlated with colony size, and experimental prey supplementation did not affect colony size. Thus, the relationship between prey consumption and colony size was influenced by coloniality directly, rather than by a correlation between prey abundance at a site and colony size.  相似文献   

7.
Northern pike (Esox lucius) are often considered to be specialist piscivores, but under some circumstances will continue to eat invertebrates as adults. To examine effects of fish assemblage composition on the trophic ecology of pike, we combined stable isotope analysis (SIA) of carbon and nitrogen and stomach content analysis (SCA) on pike from five lakes in northern Alberta, three of which contain only pike (“pike-only”) and two that also contain yellow perch (Perca flavescens) or white sucker (Catostomus commersoni) (“pike-other”). Fish were more important as prey and empty stomachs, which often characterize piscivores, were significantly more frequent in pike-other than in pike-only lakes. However, even though invertebrates were more important for pike in pike-only lakes, SIA and SCA indicated that invertebrates were also an important component of pike diets in pike-other lakes. SIA and SCA also revealed considerable intrapopulation variation in trophic ecology, with individuals in some populations differing by as much as two trophic levels. Comparisons of stomach contents and isotope signatures of the same fish suggested that within these variable populations, specialization on invertebrates or fish was a long-term trait of some individuals. SIA indicated that trophic position increased and diets shifted to a greater importance of littoral prey as pike grew in pike-only lakes, but not in lakes with other fish present. Trophic adaptability in northern pike is expressed at both the population level, where the trophic ecology is sensitive to differences in prey regimes, and at the organismal level, in the form of intrapopulation variation and individual specialization. Received: 1 July 1998 / Accepted: 3 February 1999  相似文献   

8.
Long‐term dietary monitoring of seabirds can be used to relate population fluctuations to at‐sea events. Stomach flushing is a conventional dietary monitoring technique, but has a number of disadvantages. Stable isotope analysis (SIA) is a less invasive method that provides unbiased dietary information over a longer period. We evaluated stable isotope analysis as a potential tool for monitoring long‐term little penguin Eudyptula minor diet. We determined diet composition during the chick feeding stage using stomach flushing and SIA at three separate colonies, using spatial variation in diet as a surrogate for potential temporal variation. Bayesian isotopic mixing models were generated for blood and feathers to evaluate their ability to discriminate broad‐scale (fish, squid, crustaceans) and fine‐scale (individual prey species) diet composition. Differences in stable carbon and nitrogen isotope ratios were found between colonies: broad‐scale isotopic mixing models predicted different proportional contributions of broad taxa (fish, cephalopod, crustacean) to diet than was indicated by stomach samples, reflecting the bias incurred by one‐off stomach contents analysis. Fine‐scale isotopic mixing models predicted proportional contributions of prey items with less certainty. Blood isotopic mixing models had narrower confidence intervals than models for feathers, but trends in δ15N for feathers mirrored those for blood. Our results suggest that relying on stomach contents analysis to detect shifts in prey consumption in little penguins could be very misleading, resulting in a less‐than‐complete idea of total prey consumption. SIA of little penguin tissues could be used to monitor dietary shifts across dissimilar taxa that may affect population numbers, but would fail to detect shifts between fish species.  相似文献   

9.
Males of a Neotropical eusocial wasp, Mischocyttarus mastigophorus , are dominant over their female nest mates. Mischocyttarus mastigophorus males behave aggressively toward females, while females rarely bite or chase males. Aggressive interactions between the sexes are behaviorally indistinguishable from dominance interactions among females. Males are long-lived as adults, and can reside on nests for periods of at least one month. Furthermore, males comprise a large proportion of post-emergence colony populations throughout much of the colony cycle. Males on the nest perform maintenance tasks at low rates, but contribute little other labor to their colonies. Males do not forage, but consume a disproportionate amount of the food (nectar and insect prey) collected by workers. Males in some colonies direct disproportionate amounts of aggression toward their queens, which may further contribute to males' food procurement. These data suggest that adult males represent a considerable energetic and labor cost to their colonies. I hypothesize that the dominance structure of M. mastigophorus directs food resources to adult males, with the function of increasing their longevity. Increased male longevity may be selectively advantageous in tropical species such as M. mastigophorus that found new colonies throughout much or all of the year. When females initiate new nests over much of the year, individual males' mating opportunities may be temporally distributed, favoring longer adult lifespans. Male dominance is predicted to occur in other populations of independent-founding Neotropical Polistinae with asynchronous colony foundation.  相似文献   

10.
Seabird colonies provide rare opportunities to study trophic segregation in an entire bird community. We here present data on nitrogen and carbon isotope ratios of eight species of seabirds from New Island, Falkland Islands, and compare trophic levels (TL) and foraging distributions. We included adult feathers representing the interbreeding season, as well as chick feathers or down representing the breeding season. The stable isotope ratios indicated differences in feeding areas and TLs between species, consistent with the data of previous conventional diet analyses and observations at sea. We further reviewed conventional and stable isotope seabird community studies calculating the means and ranges of TLs observed across these studies. The mean TL (3.7) of the seabird community on New Island was at the lower end of the mean value range (3.5–4.5), but not significantly different, from the reviewed seabird communities. Seabirds on New Island had a range of 1.3 TLs, which is on the upper end of ranges within a community (0.4–1.5), indicating strong trophic structuring.  相似文献   

11.
12.
Plants provide resources and shape the habitat of soil organisms thereby affecting the composition and functioning of soil communities. Effects of plants on soil communities are largely taxon‐dependent, but how different functional groups of herbaceous plants affect trophic niches of individual animal species in soil needs further investigation. Here, we studied the use of basal resources and trophic levels of dominating soil meso‐ and macrofauna using stable isotope ratios of carbon and nitrogen in arable fallow systems 3 and 14–16 years after abandonment. Animals were sampled from the rhizosphere of three plant species of different functional groups: a legume (Medicaco sativa), a nonlegume herb (Taraxacum officinale), and a grass (Bromus sterilis). We found virtually no consistent effects of plant identity on stable isotope composition of soil animals and on thirteen isotopic metrics that reflect general food‐web structure. However, in old fallows, the carbon isotope composition of some predatory macrofauna taxa had shifted closer to that of co‐occurring plants, which was particularly evident for Lasius, an aphid‐associated ant genus. Trophic levels and trophic‐chain lengths in food webs were similar across plant species and fallow ages. Overall, the results suggest that variations in local plant diversity of grassland communities may little affect the basal resources and the trophic level of prey consumed by individual species of meso‐ and macrofauna belowground. By contrast, successional changes in grassland communities are associated with shifts in the trophic niches of certain species, reflecting establishment of trophic interactions with time, which shapes the functioning and stability of soil food webs.  相似文献   

13.
Quantifying diet is essential for understanding the functional role of species with regard to energy processing, transfer, and storage within ecosystems. Recently, variance structure in the stable isotope composition of consumer tissues has been touted as a robust tool for quantifying trophic niche width, a task that has previously proven difficult due to bias in direct dietary analyses and difficulties in integrating diet composition over time. We used carbon and nitrogen stable isotope analyses to examine trophic niche width of two sympatric aquatic snakes, banded watersnakes Nerodia fasciata and black swamp snakes Seminatrix pygaea inhabiting an isolated wetland where seasonal migrations of amphibian prey cause dramatic shifts in resource availability. Specifically, we characterized snake and prey isotope compositions through time, space, and ontogeny and examined isotope values in relation to prey availability and snake diets assessed by gut content analysis. We determined that prey cluster into functional groups based on similarity of isotopic composition and seasonal availability. Isotope variance structure indicated that the trophic niche width of the banded watersnake was broader (more generalist) than that of the black swamp snake. Banded watersnakes also exhibited seasonal variation in isotope composition, suggesting seasonal diet shifts that track amphibian prey availability. Conversely, black swamp snakes exhibited little seasonal variation but displayed strong ontogenetic shifts in carbon and nitrogen isotope composition that closely paralleled ontogenetic shifts in their primary prey, paedomorphic mole salamanders Ambystoma talpoideum. Although niche dimensions are often treated as static, our results demonstrate that seasonal shifts in niche dimensions can lead to changes in niche overlap between sympatric species. Such short‐term fluctuations in niche overlap can influence competitive interactions and consequently the composition and dynamics of communities and ecosystems.  相似文献   

14.
We studied foraging segregation between two different sized colonies of little penguins Eudyptula minor with overlapping foraging areas in pre‐laying and incubation. We used stomach contents and stable isotope measurements of nitrogen (δ15N) and carbon (δ13C) in blood to examine differences in trophic position, prey‐size and nutritional values between the two colonies. Diet of little penguins at St Kilda (small colony) relied heavily on anchovy while at Phillip Island (large colony), the diet was more diverse and anchovies were larger than those consumed by St Kilda penguins. Higher δ15N values at St Kilda, differences in δ13C values and the prey composition provided further evidence of diet segregation between colonies. Penguins from each colony took anchovies from different cohorts and probably different stocks, although these sites are only 70 km apart. Differences in diet were not reflected in protein levels in the blood of penguins, suggesting that variation in prey between colonies was not related to differences in nutritional value of the diet. Anchovy is currently the only available prey to penguins throughout the year and its absence could have a negative impact on penguin food supply, particularly at St Kilda where the diet is dominated by this species. While it is difficult to establish whether diet segregation is caused by inter‐ or intra‐colony competition or spatial differences in foraging areas, we have shown that colonies with broadly overlapping foraging ranges could have significant differences in trophic position, diet composition and prey size while maintaining a diet of similar nutritional value.  相似文献   

15.
Using DNA barcoding and stable isotope analysis, we identified adult dragonfly prey items from the fecal pellets of five dragonfly species—Nannophya pygmaea, Ischnura asiatica, Sympetrum eroticum, Orthetrum albistylum, and Anax parthenope—collected from a mountain bog located in south‐eastern South Korea. Twelve operational taxonomic units (OTUs) belonging to four orders, Coleoptera, Diptera, Hemiptera, and Lepidoptera, were identified as prey items of adult dragonflies using DNA barcoding. Among prey items, Dipterans were the most common, comprising seven of the 10 OTUs. Based on stable isotope analysis, adult dragonflies and their nymphs were among the most numerous predators in both aquatic and terrestrial habitats. Additionally, dragonfly species with smaller adult sizes had different isotopic compositions to those reaching larger adult sizes. Both δ15N and δ13C values were significantly lower in smaller species than in larger species, indicating differences in their trophic levels and carbon sources.  相似文献   

16.
Although some primary consumers such as chironomid larvae are known to exploit methane‐derived carbon via microbial consortia within aquatic food webs, few studies have traced the onward transfer of such carbon to their predators. The ruffe Gymnocephalus cernuus is a widespread benthivorous fish which feeds predominantly on chironomid larvae and is well adapted for foraging at lower depths than other percids. Therefore, any transfer of methanogenic carbon to higher trophic levels might be particularly evident in ruffe. We sampled ruffe and chironomid larvae from the littoral, sub‐littoral and profundal areas of Jyväsjärvi, Finland, a lake which has previously been shown to contain chironomid larvae exhibiting the very low stable carbon isotope ratios indicative of methane exploitation. A combination of fish gut content examination and stable isotope analysis was used to determine trophic linkages between fish and their putative prey. Irrespective of the depth from which the ruffe were caught, their diet was dominated by chironomids and pupae although the proportions of taxa changed. Zooplankton made a negligible contribution to ruffe diet. A progressive decrease in δ13C and δ15N values with increasing water column depth was observed for both chironomid larvae and ruffe, but not for other species of benthivorous fish. Furthermore, ruffe feeding at greater depths were significantly larger than those feeding in the littoral, suggesting an ontogenetic shift in habitat use, rather than diet, as chironomids remained the predominant prey item. The outputs from isotope mixing models suggested that the incorporation of methane‐derived carbon to larval chironomid biomass through feeding on methanotrophic bacteria increased at greater depth, varying from 0% in the littoral to 28% in the profundal. Using these outputs and the proportions of littoral, sub‐littoral or profundal chironomids contributing to ruffe biomass, we estimated that 17% of ruffe biomass in this lake was ultimately derived from chemoautotrophic sources. Methanogenic carbon thus supports considerable production of higher trophic levels in lakes.  相似文献   

17.
Living in close association with other organisms has proven to be a widespread and successful strategy in nature. Some communities are completely driven by symbiotic associations and therefore, intimate relationships among the partners can be expected. Here, we analyzed in‐depth the food web of a particularly rich community of arthropods found in strict association with European red wood ants (Formica rufa group). We studied the trophic links between different ant‐associated myrmecophiles and food sources associated with the host ant, but also tested predator–prey links among myrmecophiles themselves. Our approach combined direct feeding tests and stable carbon and nitrogen isotope analyses for a large number of myrmecophiles. The results of the direct feeding tests reveal a complex food web. Most myrmecophiles were found to parasitize on ant brood. Moreover, we encountered multiple trophic predator– prey links among the myrmecophiles. The results of the stable isotope analyses complement these findings and indicate the existence of multiple trophic levels and trophic isotopic niche compartmentalization. δ15N values were strongly correlated with the trophic levels based on the direct tests, reflecting that δ15N values of myrmecophiles increased with higher trophic levels. This strong correlation underlines the strength of stable isotopes as a powerful tool to assess trophic levels. In addition, the stable isotope data suggest that most species only facultatively prey on ant brood. The presence of numerous trophic interactions among symbionts clearly contrasts with the traditional view of social insects nests as offering an enemy‐free space for symbionts. Interestingly, the ant host can indirectly benefit from these interactions because brood predators are also preyed upon by other myrmecophiles. Overall, this study provides unique insights into the complex interactions in a small symbiont microcosm system and suggests that the interactions between host and symbiont might be mediated by other symbionts in the same community.  相似文献   

18.
The diet of adult and juvenile Weddell seals (Leptonychotes weddellii) in McMurdo Sound, Antarctica, was determined from both scat and stable isotope analyses, to ascertain if foraging behavior varied with age, season, or diving pattern. Scats were collected over 6 years and recovered hard parts identified. Stable carbon and nitrogen isotope values were determined for seal blood samples and potential prey items and used to identify primary prey species and assess trophic interactions. Pleuragramma antarcticum remains were recovered from between 70 and 100% of the scats, and there was little evidence for inter-annual or age-specific variation in foraging behavior. However, stable isotope and dive data analyses indicated that while most seals foraged predominantly on pelagic fish and squid, some juveniles concentrated on shallow benthic Trematomus spp. Combining these three methods permitted firm conclusions about diet and foraging behavior to be drawn. Received: 10 June 1997 / Accepted: 8 November 1997  相似文献   

19.
Stable isotope ratios are biogeochemical tracers that can be used to determine the source of nutrients and contaminants in avian eggs. However, the interpretation of stable carbon ratios in lipid-rich eggs is complicated because 13C is depleted in lipids. Variation in 13C abundance can therefore be obscured by variation in percent lipids. Past attempts to establish an algebraic equation to correct carbon isotope ratios for lipid content in eggs have been unsuccessful, possibly because they relied partly on data from coastal or migratory species that may obtain egg lipids from different habitats than egg protein. We measured carbon, nitrogen and sulphur stable isotope ratios in 175 eggs from eight species of aquatic birds. Carbon, nitrogen and sulphur isotopes were enriched in lipid-extracted egg samples compared with non extracted egg samples. A logarithmic equation using the C∶N ratio and carbon isotope ratio from the non extracted egg tissue calculated 90% of the lipid-extracted carbon isotope ratios within ±0.5‰. Calculating separate equations for eggs laid by species in different habitats (pelagic, offshore and terrestrial-influenced) improved the fit. A logarithmic equation, rather than a linear equation as often used for muscle, was necessary to accurately correct for lipid content because the relatively high lipid content of eggs compared with muscle meant that a linear relationship did not accurately approximate the relationship between percent lipids and the C∶N ratio. Because lipid extraction alters sulphur and nitrogen isotope ratios (and cannot be corrected algebraically), we suggest that isotopic measurement on bulk tissue followed by algebraic lipid normalization of carbon stable isotope ratio is often a good solution for homogenated eggs, at least when it is not possible to complete separate chemical analyses for each isotope.  相似文献   

20.
Abstract.  1. Habitat management to enhance natural enemy populations in agricultural systems may help regulate levels of crop pests, but little research addresses the behaviour of immigrating beneficial insects.
2. Stable carbon isotopes were used in complementary laboratory and field studies to examine colonisation behaviour of an ephemeral agricultural habitat by the lady beetle, Hippodamia convergens Guérin-Méneville.
3. Under laboratory conditions, H. convergens carbon isotope ratios, δ13C, changed after its food supply was shifted from a C4- to a C3-based diet of aphids produced on grain sorghum or cotton respectively. Final isotope ratios of adult H. convergens were closer to that of the new C3-based diet, with most change in δ13C occurring within 3 days after the diet shift.
4. The carbon isotope ratios of lady beetle adults collected in cotton fields suggested that grain sorghum was a continuous source for H. convergens until many nearby sorghum fields matured and senesced.
5. When cotton aphid ( Aphis gossypii Glover) prey were absent, carbon isotope ratios of beetle populations did not change over time and virtually no egg production by H. convergens was detected. This indicates that beetles were feeding little on non-aphid resources originating in cotton.
6. With cotton aphids present, beetle isotope ratios decreased towards the carbon isotope ratio of cotton, indicating adult feeding in cotton. As a result, egg masses produced had carbon isotope ratios in the C3 range of values.
7. The results suggest that some predator species may be retained in habitats without large prey populations, a quality essential in controlling pests in agricultural systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号