首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Panijpan  B.  Mohan Rao  Ch.  Balasubramanian  D. 《Bioscience reports》1983,3(12):1113-1117
Hemin (ferriprotoporphyrin IX) is shown to form complexes with the chloroquine class of antimalarial drugs. The Soret band of hemin becomes optically active upon the addition of chiral drugs. Results on the hemin-induced quenching of the fluorescence of chloroquine are consistent with the formation of a 2:1 hemin:drug complex with a formation constant of 1.4 x 10(7) at 298 K. Also a direct comparison of the drug-treated and drug-free parasites themselves, by the noninvasive photoacoustic spectroscopic method, reveals an in vivo interaction between endogenous hemin and the added drug.  相似文献   

3.
4.
5.
6.
It has been recently reported that the prevalence of mutations associated with chloroquine resistance declined during the dry season. Fitness costs of drug resistance were suggested to be responsible for reduced survival of mutant parasites, and only parasites surviving chronic infections were transmitted at the onset of the rainy season. This implies that during seasonal transmission, significant changes can occur in allele frequency over the course of months, rather than years. The practical consequences of these findings for monitoring dynamics of drug-resistance markers are: (i) in areas of seasonal transmission, the sampling date matters; (ii) fluctuations in mutation frequencies might be explained by seasonality; and (iii) a much-awaited experimental determination of fitness costs of drug resistance becomes within reach.  相似文献   

7.
8.
9.
Recent experiments have suggested that resistance to antimalarial drugs, in particular chloroquine, is associated with increased transmission. However, epidemiological patterns suggest the opposite: ie. that resistance should be associated with a transmission cost. Here, Jacob Koella reviews the evidence for either a cost or a benefit of chloroquine resistance and proposes ideas from population and evolutionary biology that might explain the apparent contradiction between experimental and epidemiological evidence.  相似文献   

10.
11.
12.
Chemotherapy and chemoprophylaxis are the principal means of combating malaria parasite infections in the human host. In the last 75 years, since the introduction of synthetic antimalarials, only a small number of compounds have been found suitable for clinical usage, and this limited armoury is now greatly compromised by the spread of drug-resistant parasite strains. Our current knowledge of the molecular mechanisms underlying resistance in the lethal species Plasmodium falciparum is reviewed here.  相似文献   

13.
A cell-free system from Plasmodium falciparum able to translate endogenous mRNA was used to determine the effect of artemisinin, chloroquine and primaquine on the protein synthesis mechanism of the parasite. The antimalarial drugs did not inhibit the incorporation of [3H] methionine into parasite proteins even at concentrations higher than the ones found to strongly inhibit the parasite growth. Results clearly indicate that these compounds do not have a direct effect on protein synthesis activity of P. falciparum coded by endogenous mRNA.  相似文献   

14.
15.
A major issue in the control of malaria is the evolution of drug resistance. Ecological theory has demonstrated that pathogen superinfection and the resulting within-host competition influences the evolution of specific traits. Individuals infected with Plasmodium falciparum are consistently infected by multiple parasites; however, while this probably alters the dynamics of resistance evolution, there are few robust mathematical models examining this issue. We developed a general theory for modelling the evolution of resistance with host superinfection and examine: (i) the effect of transmission intensity on the rate of resistance evolution; (ii) the importance of different biological costs of resistance; and (iii) the best measure of the frequency of resistance. We find that within-host competition retards the ability and slows the rate at which drug-resistant parasites invade, particularly as the transmission rate increases. We also find that biological costs of resistance that reduce transmission are less important than reductions in the duration of drug-resistant infections. Lastly, we find that random sampling of the population for resistant parasites is likely to significantly underestimate the frequency of resistance. Considering superinfection in mathematical models of antimalarial drug resistance may thus be important for generating accurate predictions of interventions to contain resistance.  相似文献   

16.
17.
18.
Endosomal TLRs play an important role in innate immune response as well as in autoimmune processes. In the therapy of systemic lupus erythematosus, antimalarial drugs chloroquine, hydroxychloroquine, and quinacrine have been used for a long time. Their suppression of endosomal TLR activation has been attributed to the inhibition of endosomal acidification, which is a prerequisite for the activation of these receptors. We discovered that chloroquine inhibits only activation of endosomal TLRs by nucleic acids, whereas it augments activation of TLR8 by a small synthetic compound, R848. We detected direct binding of antimalarials to nucleic acids by spectroscopic experiments and determined their cellular colocalization. Further analysis revealed that other nucleic acid-binding compounds, such as propidium iodide, also inhibited activation of endosomal TLRs and colocalized with nucleic acids to endosomes. We found that imidazoquinolines, which are TLR7/8 agonists, inhibit TLR9 and TLR3 even in the absence of TLR7 or TLR8, and their mechanism of inhibition is similar to the antimalarials. In contrast to bafilomycin, none of the tested antimalarials and imidazoquinolines inhibited endosomal proteolysis or increased the endosomal pH, confirming that inhibition of pH acidification is not the underlying cause of inhibition. We conclude that the direct binding of inhibitors to nucleic acids mask their TLR-binding epitope and may explain the efficiency of those compounds in the treatment of autoimmune diseases.  相似文献   

19.
The proportion of asexual blood-stage malaria parasites that develop into transmission stages (gametocytes) can increase in response to stress. We investigated whether stress imposed by a variety of antimalarial drugs administered before or during infection increased gametocyte production (gametocytogenesis) in vivo in the rodent malaria parasite, Plasmodium chabaudi. All methods of drug treatment greatly reduced the numbers of asexual parasites produced during an infection but resulted in either no reduction in numbers of gametocytes or a smaller reduction than that experienced by asexuals. We used a simple model to estimate temporal variation in gametocyte production. Temporal patterns of gametocytogenesis did not greatly differ between untreated and prophylaxis infections, with rates of gametocytogenesis always increasing as the infection progressed. In contrast, administration of drugs 5 days after infection stimulated increased rates of gametocytogenesis early in the infection, resulting in earlier peak gametocyte densities relative to untreated infections. Given the correlation between gametocyte densities and infectivity to mosquito vectors, and the high frequency of subcurative drug therapy and prophylaxis in human populations, these data suggest that antimalarial drugs may frequently have only a small effect on reducing malaria transmission and may help to explain the rapid spread of drug-resistant geno-types.  相似文献   

20.
Current status of artemisinin and its derivatives as antimalarial drugs   总被引:21,自引:0,他引:21  
Artemisinin is a promising and a potent antimalarial drug, which meets the dual challenge posed by drug-resistant parasites and rapid progression of malarial illness. This review article focuses on the progress achieved during the last years in the production of artemisinin from Artemisia annua. The structure, biosynthesis and analysis of artemisinin and its mode of action are described. The review also focuses on clinical studies, toxicity studies, pharmacokinetics and activity of artemisinin related compounds. The production strategies including organic synthesis, extraction from plants, in vitro cultures and alternative strategies for enhancing the yields are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号