首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mebus CA  Singh EL 《Theriogenology》1991,35(2):435-441
A total of 436 embryos/unfertilized ova was collected from 30 foot-and-mouth disease (FMD) viremic cattle; 106 of these embryos/ova were from eight donors that had FMD virus in their reproductive tracts. The 436 embryos/ova were washed and then either assayed in cell culture or intradermally in steer tongues or transferred to recipients. Foot-and-mouth infectivity was not found to be associated with any of the embryos/ova assayed in cell culture or intradermally. The 149 embryos transferred produced two abortions, five sets of twins born prematurely, and 15 normal calves. All of the recipients and all of the calves remained FMD-seronegative.  相似文献   

2.
When 169 zona pellucida-intact bovine embryos were exposed to 10(6) pfu/ml of foot-and-mouth disease virus and then washed, no infectious virus was detected on any of the embryos. FMD viral infectivity was found, however, in association with 14 of 42 hatched (zona pellucida-free) bovine embryos and in a small number of zona pellucida-intact porcine embryos. The porcine embryos were assayed individually and in groups of 8 embryos. Four of the 124 individual embryos and 2 of the 9 groups of embryos carried the infectious virus.  相似文献   

3.
Early research indicated that bovine viral diarrhea virus (BVDV) would not adhere to zona pellucida-intact (ZP-I), in vivo-derived bovine embryos. However, in a recent study, viral association of BVDV and in vivo-derived embryos was demonstrated. These findings raised questions regarding the infectivity of the embryo-associated virus. The objectives of this study were to evaluate the infectivity of BVDV associated with in vivo-derived bovine embryos through utilization of primary cultures of uterine tubal cells (UTC) as an in vitro model of the uterine environment and to determine if washing procedures, including trypsin treatment, were adequate to remove virus from in vivo-derived embryos. One hundred and nine ZP-I morulae and blastocysts (MB) and 77 non-fertile and degenerated (NFD) ova were collected on day 7 from 34, BVDV-negative, superovulated cows. After collection, all MB and NFD ova were washed according to International Embryo Transfer Society (IETS) standards and exposed for 2h to approximately 10(6) cell culture infective doses (50% endpoint) per milliliter of viral strain SD-1. Following exposure, some groups of <10 MB or NFD ova were washed in accordance with IETS standards. In addition, an equivalent number of MB and NFD ova were subjected to IETS standards for trypsin treatment. Subsequently, NFD ova were immediately sonicated and sonicate fluids were assayed for presence of virus, while individual and groups of MB were placed in microdrops containing primary cultures of UTCs and incubated. After 3 days, embryos, media, and UTCs were harvested from each microdrop and assayed for BVDV. Virus was detected in the sonicate fluids of 56 and 43% of the groups of NFD ova that were washed and trypsin-treated, respectively. After 3 days of microdrop culture, virus was not detected in media or sonicate fluids from any individual or groups of MB, regardless of treatment. However, virus was detected in a proportion of UTC that were co-cultured with washed groups of MB (30%), washed individual MB (9%) and trypsin treated individual MB (9%), but no virus was detected in the UTC associated with groups of trypsin-treated embryos. In conclusion, virus associated with developing embryos was infective for permissive cells. Further, the quantity of virus associated with a proportion of individual embryos (both washed and trypsin treated) was sufficient to infect the UTC. In light of these results, an attempt should be made to determine if the quantity of a high-affinity isolate of BVDV associated with an individual embryo would infect recipients via the intrauterine route.  相似文献   

4.
In previous studies, bovine viral diarrhea virus (BVDV) remained associated with IVF embryos after viral exposure and washing. However, uterine tubal cells (UTC) were not infected when exposed embryos were washed and individually co-cultured with them. The objective of this study was to evaluate quantity and infectivity of embryo-associated virus and antiviral influence of a blastocyst as possible explanations for failure to infect the UTC in vitro. Morulae and blastocysts were produced in vitro and washed. A portion of the embryos were incubated for 2 h in medium containing 10(6) to 10(8) cell culture infective doses (50%, CCID50) of a genotype I, noncytopathic BVDV per milliliter and then washed again. Virus isolation was attempted on sonicated negative (virus unexposed) and positive (virus exposed) control embryo groups after washing. The influence of quantity and infectivity of embryo-associated virus was evaluated by transferring exposed, washed embryo groups (2, 5, and 10 embryos/group) or sonicate fluid of exposed, washed, sonicated embryo groups (2, 5, and 10 embryos/group) to cultures containing bovine UTC in IVC medium that was free of BVDV neutralizing activity. The antiviral influence of an embryo was evaluated by adding 1 to 10(5) CCID50 of BVDV to UTC in the presence or absence of a single unexposed blastocyst in IVC medium. After 2 d in co-culture, the UTC, IVC medium and washed embryos (when present) were tested separately for the presence of BVDV using virus isolation. Virus was isolated from sonicate fluids of all positive but no negative controls. Virus was not isolated from any UTC following 2 d of culture with virally exposed groups of intact embryos. However, virus was isolated from UTC cultured with sonicate fluids from some groups of 5 (60%) and 10 (40%) embryos. Infective virus also remained associated with some groups of 2 (20%), 5 (40%) and 10 (60%) intact embryos after 48 h of post-exposure culture. Finally, primary cultures of UTC were more susceptible to infection with BVDV in the absence of a blastocyst (P = 0.01). Results indicate that insufficient quantity and reduced infectivity of embryo-associated virus as well as an antiviral influence of intact IVF blastocysts may all contribute to failure of embryo-associated virus to infect UTC in vitro.  相似文献   

5.
Bovine diarrhea virus (BVDV) causes a variety of economically important enteric and infertility problems in cattle. For that reason, several countries have eradicated the disease, and some others have schemes in progress to achieve freedom. Although there is a considerable amount of information about the risk of BVDV transmission through contaminated semen used for artificial insemination (AI), there is no evidence to indicate whether the resulting embryos, when used for embryo transfer, can lead to the transmission of BVDV to recipients or offspring. For this experiment, semen from a bull persistently infected with BVDV (105 50% tissue culture infective doses/mL NY strain) was used for insemination (two times at estrus) of BVDV-seronegative, superovulated cows (N = 35). Embryos were collected 7 days after insemination and subsequently were washed according to the International Embryo Transfer Society recommendations or left unwashed. Out of 302 collected oocytes and embryos, 173 (57%) were fertilized and the remaining 129 (43%) had degenerated. Infectious BVDV was detected in 24% (17/71) of unwashed and 10% (8/77) of washed embryos, and in all (N = 11) follicular fluid samples, oviductal epithelial cells, endometrium, and corpora lutea tissues as determined by the virus isolation test. After transfer of 39 washed embryos to 27 BVDV-seronegative recipients, 12 (44%) cows became pregnant and 17 calves free of BVDV and BVDV antibodies, including five sets of twins, were born. After embryo transfer, all pregnant and nonpregnant recipients remained free of BVDV and antibodies. In conclusion, results herein suggest that BVDV can be transmitted by AI resulting in the production of some proportion of contaminated embryos. However, it appears that such embryos, when washed according to International Embryo Transfer Society and the World Organization for Animal Health guidelines do not cause BVDV transmission to recipients or their offspring.  相似文献   

6.
Lei W  Liang Q  Jing L  Wang C  Wu X  He H 《Molecular biology reports》2012,39(9):9203-9209
For the further characterization of foot-and-mouth disease virus (FMDV)-induced foot-and-mouth disease, we investigated the association between polymorphism of BoLA-DRB3 gene and FMD resistance/susceptibility of Wanbei cattle challenged with FMDV. One hundred cattle were challenged with FMDV and exon 2 of BoLA-DRB3 genes was amplified by hemi-nested polymerase chain reaction from asymptomatic animals and from animals with FMD. PCR products were characterized by the RFLP technique using restriction enzymes Hae III. The results revealed extensive polymorphisms, 6 RFLP patterns were identified. By analyzing alleles and genotypic frequencies between healthy and infection with FMD cattle, we found that allele Hae III A was associated with susceptibility to FMD in Wanbei cattle (P < 0.05), whereas Hae III C was associated with resistance to FMD (P < 0.01) and may have a strong protective effect against FMD. Hae IIICC and Hae III BC genotype were associated with resistance to FMD (P < 0.01). By contrast, Hae III AA genotype was associated with susceptibility to FMD (P < 0.01). Sequence analysis show that 89 amino acids were translated in exon 2 of BoLA-DRB3 and 13.70 % of nucleotide mutated, which resulted in 14.61 % of amino acid change. One PKC, one Tyr and one CAMP phosphorylation were increased; the hydrophobicity and secondary structure of proteins produced change after amino acid substitution. These results revealed that Wanbei cattle had the ability of resistance to disease by mutation which result changes of the protein structure to perform the regulation of the cell using different signaling pathways in the long process of choice evolution.  相似文献   

7.
In the first experiment, heifers were infected experimentally with bovine viral diarrhea virus type II (BVDV-type II, strain CD87; characterized by high morbidity and mortality). Subsequently, in vitro fertilized embryos were produced from oocytes collected on Day 4, 8, and 16 post infection. In a total of 29 heifers, the infectious virus was detected in 55% of the samples of the follicular fluid, in 10% of the oviductal cells, in 10% of the uterine flushes and in 41% of the in vitro fertilized embryos. The highest number of embryos associated with the virus was detected in the group of animals slaughtered on Day 8 post infection (58%). The amount of the virus (10(1.5-2.0) TCID50/mL) associated with the washed single embryos generated from oocytes of heifers 8 and 16 d post infection was sufficient for disease transmission by intravenous inoculation to the seronegative recipients (6/15). In the second experiment, uninfected oocytes were exposed in vitro to BVDV (10(5) TCID50/mL) in the maturation medium and then fertilized and cultured prior to viral assay. Virus was detected in 4 of 7 samples containing embryos but not in samples of embryos produced from the control group of uninfected oocytes. The presence of BVDV in the IVF system did not affect embryonic development in vitro. In conclusion, it appears that BVDV-type II has the ability to be transferred with oocytes through the IVF system, resulting in infectious embryos with normal morphological appearance which may have a potential for disease transmission.  相似文献   

8.
9.
G Ward  E Rieder    P W Mason 《Journal of virology》1997,71(10):7442-7447
DNA vaccine candidates for foot-and-mouth disease (FMD) were engineered to produce FMD virus (FMDV) particles that were noninfectious in cell culture or animals. The prototype plasmid, pWRM, contains a cytomegalovirus immediate-early promoter-driven genome-length type A12 cDNA followed by the bovine growth hormone polyadenylation site. BHK cells transfected with this plasmid produced virus, but the specific infectivity of pWRM was much lower than that achieved with in vitro-generated RNA genomes. To improve the infectivity of the plasmid, a cDNA encoding the hepatitis delta virus ribozyme was added to the 3' end of the FMDV cDNA. The resulting plasmid, pWRMH, exhibited slightly increased infectivity in cell culture and produced virus when inoculated into suckling mice. A third plasmid, pWRMHX, was created by removal of the sequences encoding the cell binding site found in capsid protein VP1 of pWRMH. Although cells transfected with pWRMHX produced viral capsids, this plasmid was not lethal in suckling mice, indicating that particles lacking the cell binding site were not able to initiate secondary infectious cycles. Swine inoculated with pWRMHX did not show any signs of disease and produced neutralizing antibodies to FMDV, and 20% of the vaccinated animals were protected from challenge. A derivative of pWRMHX, pWRMHX-pol-, harboring a mutation designed to inactivate the viral polymerase was much less immunogenic, indicating that immunogenicity of pWRMHX resulted, in part, from amplification of the viral genome in the animal.  相似文献   

10.
Introduction of bovine viral diarrhea virus (BVDV) with cumulus-oocyte-complexes (COCs) from the abattoir is a concern in the production of bovine embryos in vitro. Further, International Embryo Transfer Society (IETS) guidelines for washing and trypsin treatment of in-vivo-derived bovine embryos ensure freedom from a variety of pathogens, but these procedures appear to be less effective when applied to IVF embryos. In this study, COCs were exposed to virus prior to IVM, IVF and IVC. Then, virus isolations from cumulus cells and washed or trypsin-treated nonfertile and degenerated ova were evaluated as quality controls for IVF embryo production. The effect of BVDV on rates of cleavage and development was also examined. All media were analyzed prior to the study for anti-BVDV antibody. Two approximately equal groups of COCs from abattoir-origin ovaries were washed and incubated for 1 h in minimum essential medium (MEM) with 10% equine serum. One group was incubated in 10(7) cell culture infective doses (50% endpoint) of BVDV for 1 h, while the other was incubated without virus. Subsequently, the groups were processed separately with cumulus cells, which were present throughout IVM, IVF and IVC. Cleavage was evaluated at 4 d and development to morulae and blastocysts at 7 d of IVC. After IVC, groups of nonfertile and degenerated ova or morulae and blastocysts were washed or trypsin-treated, sonicated and assayed for virus. Cumulus cells collected at 4 and 7 d were also assayed for virus. Anti-BVDV antibody was found in serum used in IVM and IVC but not in other media. A total of 1,656 unexposed COCs was used to produce 1,284 cleaved embryos (78%), 960 embryos > or = 5 cells (58%), and 194 morulae and blastocysts (12%). A total of 1,820 virus-exposed COCs was used to produce 1,350 cleaved embryos (74%), 987 embryos > or = 5 cells (54%), and 161 morulae and blastocysts (9%). Rates of cleavage (P = 0.021), cleavage to > or = 5 cells (P = 0.026) and development to morula and blastocyst (P = 0.005) were lower in the virus-exposed group (Chi-square test for heterogeneity). No virus was isolated from any samples from the unexposed group. For the exposed group, virus was always isolated from 4- and 7-d cumulus cells, from all washed nonfertile and degenerated ova (n = 40) and morulae and blastocysts (n = 57) and from all trypsin-treated nonfertile and degenerated ova (n = 80) and morulae and blastocysts (n = 91). Thus, virus persisted in the system despite the presence of neutralizing antibody in IVM and IVC media, and both washing and trypsin treatment were ineffective for removal of the virus. Presence of virus in 4- and 7-d cumulus cells as well as in nonfertile and degenerated ova were good indicators of virus being associated with morulae and blastocysts.  相似文献   

11.
The aim of the project was to ascertain if Mycobacterium avium subsp. paratuberculosis (Map) could be cultured from frozen-thawed in vitro produced (IVP) embryos derived from cows with subclinical Johne's disease (JD). Straws of 109 IVP embryos were obtained from 267 cumulus-oocyte-complexes (COCs) collected from 12 clinically normal cows in which antibodies against Map were detected in blood by an enzyme-linked immunosorbent assay (ELISA). These embryos were processed, washed using the standard protocol as described by the International Embryo Transfer Society (IETS) and frozen in a commercial IVP embryo laboratory. Of the 12 donor cows, 11 had histopathological or bacteriological evidence of infection at post-mortem inspection. The frozen embryos were thawed and the contents of the straws were cultured using the radiometric mycobacterial culture method. No Map was detected in any of the 109 embryos or freezing media. This suggests that the use of in vitro produced and cryopreserved embryos derived from cows with subclinical JD poses very low, if any, risk of spreading infection to susceptible animals.  相似文献   

12.
Two recent studies demonstrated that a high-affinity isolate of BVDV (SD-1), remained associated with a small percentage of in vivo-derived bovine embryos following artificial exposure to the virus and either washing or trypsin treatment. Further, the embryo-associated virus was infective in an in vitro environment. Therefore, the objective of this study was to determine if the quantity of a high-affinity isolate of BVDV associated with single-washed or trypsin-treated embryos could cause infection in vivo. Twenty zona-pellucida-intact morulae and blastocysts (MB) were collected on day 7 from superovulated cows. After collection, all MB were washed according to International Embryo Transfer Society (IETS) standards, and all but 4 MB (negative controls) were exposed for 2 h to 10(5)-10(6) cell culture infective doses (50% endpoint) per milliliter (CCID(50)/mL) of viral strain SD-1. Following exposure, according to IETS standards, one half of the MB were washed and one half were trypsin treated. All MB were then individually sonicated, and sonicate fluids were injected intravenously into calves on day 0. Blood was drawn to monitor for viremia and(or) seroconversion. Seroconversion of calves injected with sonicate fluids from washed and trypsin-treated embryos occurred 38% and 13% of the time, respectively. Therefore, the quantity of a high-affinity isolate of BVDV associated with single-washed or trypsin-treated embryos was infective in vivo.  相似文献   

13.
Singh EL  Thomas FC 《Theriogenology》1987,28(5):691-697
Infectious virus was isolated from both porcine and bovine zona pellucida-intact embryos that had been exposed to the Indiana strain of vesicular stomatitis virus (VSV) and then washed. The amount of virus isolated from embryos depended on their initial exposure level. Porcine embryos always retained more virus than bovine embryos. When embryos were cultured for 24 h after viral exposure and washing, the number of embryos carrying VSV and the amount of virus on each of the embryos was reduced. Trypsin (0.25%) was also found to be effective in inactivating/removing the VSV from embryos, suggesting that most, if not all, of the virus was bound to the zona pellucida.  相似文献   

14.
In Experiment 1, development of zona pellucida-intact (ZPI) morulae was measured every 24 hours for 120 hours after encapsulation in 2% sodium alginate (ALG) or 0.1% poly-L-lysine (PLL). Encapsulation significantly reduced development to hatched blastocysts at 48 and 72 hours. Developmental stages and diameters of ZPI and zona pellucida-free (ZPF) unencapsulated and encapsulated morulae were measured every 24 hours for 72 hours in Exeriment 2. At 72 hours, the percentage of ZPI embryos developing to expanded blastocysts, their diameters and their nuclear counts were not different from each other or from ZPF embryos. In Experiment 3, ZPI morulae encapsulated in ALG or PLL were transferred into recipients. Five of six recipients that received unencapsulated embryos (n=71) delivered 16 live pups. None of the recipients of encapsulated embryos delivered offspring; therefore, a final experiment was performed to examine fetal development on Day 10 of gestation. The percentage of pregnant recipients was similar for all 3 treatments: unencapsulated (71.4%), ALG (87.5%) and PLL (87.5%). However, the presence of viable fetuses was higher for unencapsulated embryos (42.1%) than for ALG (17%) and PLL (14.6%) embryos. These results suggest that encapsulation did not detrimentally affect embryonic size or cellular development in vitro; however, mortality occurred in vivo due to an asynchronous condition between the uterine environment and the embryos.  相似文献   

15.
Singh EL  Thomas FC 《Theriogenology》1987,27(3):443-449
When zona pellucida-intact porcine embryos were exposed to 10(7) plaque-forming units (pfu)/ml of swine vesicular disease virus (SVDV) and then washed, infectious virus could be isolated from all of the embryos. Culturing the embryos for 24 or 48 h or treating the embryos with pronase, trypsin, or antiserum after virus exposure and washing reduced the number of embryos carrying virus and lessened the amount of virus on each of the embryos. None of the treatments, however, was capable of disinfecting every embryo.  相似文献   

16.
Antibody against foot-and-mouth disease (FMD) virus was measured by the indirect complement fixation (ICF) test. For this test serum samples were collected from cattle experimentally infected with FMD virus of O, A and Asia 1 types, as well as cattle infected in the field. Two types of antigen were used. One was antigen derived from infected lingual epithelial culture prepared by Frenkel's method with each type of the virus. The other was antigen derived from the lingual epithelium of cattle infected by virus inoculation. ICF antibody began to be dectected about 4 5 days after inoculation. It reached a maximum titer 10 14 days after inoculation, remaining at this titer for about a week or two, and then decreased gradually. It was, however, detectable even 63 days after inoculation. The rise and fall of ICF antibody was parallel with that of neutralizing antibody, although that antibody was always lower in titer than this. ICF antibody was detected type-specifically from cattle infected experimentally and naturally. These results indicated that the ICF test was available for the routine serological diagnosis and epizootiological investigation and research.  相似文献   

17.
18.
As part of a program to study the feasibility of using embryo transfer to control disease, initial experiments were undertaken to determine the virus susceptibility of early embryos. Two hundred and ninety-three preimplantation bovine embryos (16-cell to blastocyst stage) were exposed to either akabane virus (AV), bluetongue virus (BTV) or bovine viral diarrhea virus (BVDV). Two hundred and thirty-seven of these embryos were then cultured for 24-48 hours in order to determine whether the virus had any effect on embryonic development and to allow viral replication to occur. No infectious virus was isolated from any of the embryos and the in vitro development of virus exposed embryos proceeded normally. In addition, twenty-nine eggs/embryos isolated from donors that were seropositive to BVDV were found to be uninfected with this virus.  相似文献   

19.
Perry GH 《Theriogenology》2007,68(1):38-55
Bovine virus diarrhea virus (BVDV) is a pathogen of the bovine reproductive system causing reduced conception rates, abortions and persistently infected calves. Most if not all strains of BVDV are transmissible by natural mating and AI. For international trade, it is recommended that in vitro fertilized embryos be washed according to the IETS Manual. However, BVDV may not be entirely washed out, resulting in possible transmission risks to recipients. Donor cows, donor bulls and biological agents are all possible sources of contamination. The process for producing in vitro produced (IVP) embryos is complex and non-standard, and some procedures can contribute to spread of BVDV to uninfected embryos. The structure of the zone pellucida (ZP) of IVP embryos permits adherence of BVDV to the ZP. To estimate the risk of producing infected recipients and persistently infected calves from abattoir-derived IVP embryos, a quantitative risk assessment model using Microsoft Excel and Palisade @Risk was developed. Assumptions simplified some of the complexities of the IVP process. Uncertainties due to incomplete or variable data were addressed by incorporating probability distributions in the model. Model variables included: disease prevalence; the number of donor cows slaughtered for ovaries; the number of oocytes collected, selected and cultured; the BVDV status of ovaries, semen, biological compounds and its behavior in the IVP embryo process. The model used the Monte Carlo method to simulate the IVP process. When co-culture cells derived from donor cows of unknown health status were used for in vitro culture (IVC), the probability of a recipient cow at risk of infection to BVDV per oocyte selected for IVP processing averaged 0.0006. However, when co-culture free from BVDV was used, the probability was 1.2 x 10(-5). Thus, for safe international trade in bovine IVP embryos (i.e. negligible risks of transmission of BVDV), co-culture cells, if used during IVC for producing IVP embryos, should be disease-free.  相似文献   

20.
The ability of foot-and-mouth disease virus (FMDV) to establish subclinical and even persistent infection, the so called carrier state, imposes the need to reliably demonstrate absence of viral circulation, to monitor the progress of control measures, either during eradication programs or after reintroduction of virus in free areas. This demonstration becomes critical in immunized populations, because of the concern that silent viral circulation could be hidden by immunization. This concern originates from the fact that vaccination against foot-and-mouth disease (FMD) protects against clinical disease, but not necessarily against subclinical infection or establishment of the carrier state in cattle. A novel approach, developed and validated at PANAFTOSA during the 1990s, based on an immunoenzymatic system for detection of antibodies against non-capsid proteins (NCP) has proven valuable for monitoring viral circulation within and between herds, irrespective of the vaccination status. Antibodies against NCP are induced during infection but, in principle, not upon vaccination. The validation of this system led to its international recognition as the OIE index test. The fitness of this serosurvey tool to assess viral circulation in systematically vaccinated populations was demonstrated through its extensive application in most regions in South America. The experience attained in these regions supported the incorporation of the "free of FMD with vaccination" provisions into the OIE code. Likewise, it opened the way to alternatives to the "stamping out" policy. The results gave input to an old controversy related to the real epidemiological significance, if any, of carrier animals under the vaccination conditions in South America, and supported the development of recommendations and guidelines that are being implemented for serosurveys that go with control measures in vaccinated populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号