首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functional heterogeneity among human inducer T cell clones   总被引:12,自引:0,他引:12  
Analysis of mouse CD4+ inducer T cells at the clonal level has established that a dichotomy among CD4+ T cell clones exists with regard to types of lymphokines secreted. Mouse T cell clones designated Th1 have been shown to secrete IL-2 and IFN-gamma, whereas T cell clones designated Th2 have been shown to produce IL-4 but not IL-2 or IFN-gamma. To determine if such a dichotomy in the helper inducer T cell subset occurred in man, we examined a panel of human CD4+ helper/inducer T cell clones for patterns of lymphokine secretion and for functional activity. We identified human T cell clones which secrete IL-4 but not IL-2 or IFN-gamma, and which appeared to correspond to murine Th2 clones. In marked contrast to murine IL-2 secreting Th1 clones which do not produce IL-4 or IFN-gamma, we observed that some human T cell clones secrete IL-2, and IFN-gamma as well as IL-4. Southern blot analysis indicated that these multi-lymphokine-secreting clones represented the progeny of a single T cell. IL-4 secretion did not always correlated with enhanced ability to induce Ig synthesis. Although one T cell clone which secreted IL-2, IL-4, and IFN-gamma could efficiently induce Ig synthesis, another expressed potent cytolytic and growth inhibitory activity for B cells, and was ineffective or inhibitory in inducing Ig synthesis. These results indicate that although the equivalent of murine Th2 type cells appears to be present in man, the simple division of T cells into a Th1 and Th2 dichotomy may not hold true for human T cells.  相似文献   

2.
Limiting dilution analysis was used to estimate the frequency of clonogenic Ag-specific CD4+ T lymphocytes in draining lymph nodes of mice over the course of infection with Leishmania major, and to measure the production of IL-2, IL-3, IL-4, IFN-gamma, and TNF by the resultant clones. Infection of both genetically susceptible BALB/c ("non-healer") and resistant C57BL/6 ("healer") mice resulted in at least a fourfold increase in the frequency (to about 0.3%) and at least a 10-fold increase in the total number of lymph node CD4+ cells that formed clones when cultured with L. major Ag in vitro. At 1 wk after infection, the majority of clones from BALB/c mice secreted IL-4 (precursor frequency 0.15%) and fewer secreted IFN-gamma (0.05%); this pattern remained constant for at least 8 wk after infection. In C57BL/6 mice, however, a high precursor frequency of IL-4-secreting clones was measured in the first 1 to 2 wk when the mice had lesions, but resolution of infection was associated with a decrease in the frequency of IL-4-secreting clones (from 0.13% at 2 wk to 0.03% at 4 wk) and an increase in the frequency of IFN-gamma-secreting clones (from 0.08% to 0.22%). At all stages of infection, most clones from either mouse strain secreted IL-3 and very few secreted TNF. Analysis of PCR-amplified cDNA from draining lymph nodes of infected mice also revealed that IL-4 and IFN-gamma mRNA were expressed in both mouse strains early in infection. IL-4 mRNA was the major species at 2 and 6 wk after infection in BALB/c mice, but declined relative to IFN-gamma mRNA over this time in C57BL/6 lymph nodes. Precursor frequency estimates of lymphokine-secreting CD4+ cells in draining lymph nodes therefore correlated with lymphokine expression patterns in vivo. Analysis of a panel of individual short term clones derived from mice 1 wk after infection revealed marked heterogeneity in lymphokine production patterns. In BALB/c mice, 49% secreted IL-4 without IFN-gamma, 18% secreted IFN-gamma without IL-4, and 14% secreted both IL-4 and IFN-gamma. Similarly in C57BL/6 mice, 39% secreted IL-4, 20% secreted IFN-gamma, and 17% secreted both lymphokines. Many of the clones also produced IL-3 and/or IL-2. Together the data suggest that both IL-4 and IFN-gamma are synthesized early in infection of susceptible and resistant mice as assessed by mRNA and precursor frequency analyses.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The cytolytic potential of a total number of 118 CD4+ human T cell clones specific for purified protein derivative (PPD) from Mycobacterium tuberculosis, tetanus toxoid, Lolium perenne group I allergen (Lol p I), Poa pratensis group IX allergen (Poa p IX), or Toxocara canis excretory/secretory antigen(s) (TES) was assessed by both a lectin (PHA)-dependent and a MHC-restricted lytic assay and compared with their profile of cytokine secretion. The majority of clones with Th1 or Th0 cytokine profile exhibited cytolytic activity in both assays, whereas Th2 clones usually did not. There was an association between the cytolytic potential of T cell clones and their ability to produce IFN-gamma, even though IFN-gamma produced by T cell clones was not responsible for their cytolytic activity. IL-4 added in bulk culture before cloning inhibited not only the differentiation of PPD-specific T cells into Th1-like cell lines and clones, but also the development of their cytolytic potential. The depressive effect of IL-4 on the development of PPD-specific T cell lines with both Th1 cytokine profile and cytolytic potential was dependent on early addition of IL-4 in bulk cultures. In contrast, the addition in bulk culture of IFN-gamma enhanced both the cytolytic activity of PPD-specific T cell lines, as well as the proportion of PPD-specific T cell clones with cytolytic activity. The addition in bulk cultures before cloning of IFN-gamma or IFN-alpha favored the development of TES-specific and Poa p IX-specific T cells into T cell clones showing a Th0 or even a Th1, rather than a Th2, cytokine profile. Accordingly, most of TES- and Poa p IX-specific T cell clones derived from cultures containing IFN-gamma or IFN-alpha displayed strong cytolytic activity. These data indicate that the majority of human T cell clones that produce IFN-gamma, but not IL-4 (Th1-like), as well as of T cell clones that produce IFN-gamma in combination with IL-4 (Th0-like) are cytolytic. More importantly, they demonstrate that the addition of IFN (alpha and gamma) or IL-4 in bulk cultures before cloning may influence not only the cytokine profile of human CD4+ T cell clones but also their cytolytic potential.  相似文献   

4.
Immune deviation of cytolytic T cell function, induced by type 2 cytokines like IL-4, is an attractive concept to explain failure of the immune system in some diseases. However, this concept is challenged by previous conflicting results on whether type 2 cytokine-producing CD8(+) T cells are cytolytic. Therefore, we have analyzed the relationship between cytolytic activity and cytokine production among large numbers of primary CD8(+) T cell clones. Single murine CD8(+) T cells of naive phenotype were activated at high efficiency with immobilized Abs to CD3, CD8, and CD11a in the presence of IL-2 (neutral conditions) or IL-2, IL-4, and anti-IFN-gamma Ab (type 2-polarizing conditions) for 8-9 days. Under neutral conditions, most clones produced IFN-gamma without IL-4 and were cytolytic. Under type 2-polarizing conditions, most clones produced IFN-gamma and IL-4 but displayed variable cytolytic activity and CD8 expression. Separation on the basis of surface CD8 levels revealed that, compared with CD8(high) cells from the same cultures, CD8(low) cells were poorly cytolytic and expressed low levels of perforin mRNA and protein and granzyme A, B, and C mRNA. A similar, smaller population of noncytolytic CD8(low) cells was identified among CD8(+) T cells activated in mixed lymphocyte reaction with IL-4. Variable efficiency of generation of the noncytolytic cells may account for the differing results of earlier studies. We conclude that IL-4 promotes the development of a noncytolytic CD8(low) T cell phenotype that might be important in tumor- or pathogen-induced immune deviation.  相似文献   

5.
Expression of two distinct cytolytic mechanisms among murine CD4 subsets   总被引:5,自引:0,他引:5  
A TNF (TNF-alpha and TNF-beta)-sensitive target, L929, and two TNF-resistant targets, P815 and LK were used to compare the cytolytic activity among subsets of CD4+ (Th) clones. Cytolytic activity was induced with either Con A, CD3-mAb, or Ag-pulsed LK cells. Six Th1 clones are strongly cytolytic against all three targets. In contrast, Th2 clones are either noncytolytic or weakly cytolytic. Although there is an apparent correlation between TNF production, killing of L929 cells, and the killing of TNF-resistant targets, an anti-TNF serum (capable of neutralizing both TNF-alpha and TNF-beta) selectively inhibits CD4 clones to lyse L929 cells, whereas the lysis of P815 or LK cells was unaffected. The continuous presence of noncytotoxic levels of Actinomycin D (AcD) and cycloheximide, but not mitomycin C, cyclosporin A (CsA), or cholera toxin (ChT) inhibits the lysis of Ag-pulsed, Ia-bearing LK cells; indicating a requirement for de novo synthesis of RNA and protein for cytolytic activity. Although pretreatment with AcD, CsA, or ChT strongly inhibits production of IL-2, TNF and IFN-gamma, only clones pretreated with AcD lose cytolytic activity against Ag-pulsed, Ia-bearing LK cells. These observations support a model of TNF-independent killing of TNF-resistant targets. The TNF-independent cytolytic activity does not correlate with serine esterase activity released into media upon activation of CD4 clones. Moreover, the effects of metabolic inhibitors on serine esterase release do not correlate with their effects on cytolytic activity. Collectively, the data demonstrate that activated CD4 cells express two distinct cytolytic activities; a TNF (and IFN-gamma)-mediated cytotoxicity and a TNF (and IFN-gamma)-independent cytolytic activity. Both pathways require de novo synthesis of RNA and protein and appear to be independent of granule enzyme release. Only the TNF-independent cytolytic activity is resistant to CsA and ChT inhibition.  相似文献   

6.
7.
Lymphokine secretion by in vivo-activated T cells was analyzed at the population and single-cell levels in lymphocytes from mice undergoing an acute allogeneic graft-vs-host reaction (GVHR). Three observations were made. First, constitutive lymphokine production by these cells was very low but could be dramatically up-regulated by TCR ligation. Thus, even when harvested at the peak of the GVHR, fewer than 0.1% of lymphocytes secreted detectable granulocyte-macrophage (GM)-CSF, IFN-gamma, or IL-3 in the first 24 h in vitro, and average production of these lymphokines in bulk cultures was less than 10(-5) U/cell. However, when cultured for 24 h with anti-CD3 antibody under conditions which activated less than 0.1% of normal cells, about 30% of GVHR T cells secreted GM-CSF, IFN-gamma, and/or IL-3, and average production levels were increased by 10(3)- to 10(4)-fold. Together with evidence that host alloantigen-induced lymphokine secretion was 10 to 100 times lower than the anti-CD3 response, these data suggest that physiologic lymphokine synthesis by most T cells is low (less than 10(-18) mol of IL-3 per cell) but can be raised above the threshold of detection by TCR cross-linking. Second, individual GVHR lymphocytes varied markedly in their total and relative production of different lymphokines in response to anti-CD3 stimulation, with some cells secreting IL-3 alone, some secreting IL-3 accompanied by other lymphokines (GM-CSF and/or IFN-gamma), and some secreting other lymphokines without detectable IL-3. Finally, both CD4+ and CD8+ T cells from GVHR mice responded to anti-CD3 antibody by secreting IL-3 and other lymphokines: purified CD4+ cells contained an average of 16% and CD8+ cells an average of 10% anti-CD3-inducible lymphokine-secreting cells. By contrast, only 2 to 3% of cells of either subset formed clones in cultures with host allogeneic cells and IL-2, suggesting that clonogenic alloreactive cells were a minority of the T cells activated in the GVHR.  相似文献   

8.
The functional capabilities of human peripheral blood CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones were examined. The clones were generated by culturing purified populations of CD3+CD4-CD8- and CD3+CD4+CD8+ T cells at limiting dilution (0.3 cell/well) in the presence of PHA, rIL-2, and irradiated PBMC as feeders. Twelve CD3+CD4-CD8- and 5 CD3+CD4+CD8+ clones were generated. Clonality was documented by analyzing TCR gamma- and beta-chain rearrangement patterns. All CD3+CD4-CD8- clones were stained by the TCR-delta 1 mAb that identifies a framework epitope of the TCR delta-chain, but not by mAb WT31 that identifies the TCR-alpha beta on mature T cells. In contrast, the CD3+CD4+CD8+ clones were all stained by WT31 and not by TCR-delta 1. All 17 clones were screened for various functional activities. Each secreted IL-2, IFN-gamma, and lymphotoxin/TNF-like factors when stimulated with immobilized mAb to CD3 (64.1), albeit in varying quantities. These clones secreted far less IL-2 and IFN-gamma than CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta expressing clones, but comparable amounts of lymphotoxin/TNF. All clones also functioned as MHC-unrestricted cytotoxic cells. This activity was comparable to that mediated by the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. Nine of 12 CD3+CD4-CD8- and 4 of 5 CD3+CD4+CD8+ clones were able to support B cell differentiation when activated by immobilized anti-CD3, but usually not as effectively as the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. The differences in the functional capabilities of the various clones could not be accounted for by alterations in the signaling capacity of the CD3 molecular complex as mAb to CD3 induced comparable increases in intracellular free calcium in each clone examined. When clones were stimulated with PWM, each suppressed B cell differentiation supported by mitomycin C-treated fresh CD4+ T lymphocytes. Suppression was dependent on the number of clone cells added to culture, but could be observed with as few as 12,500 cells per microtiter well. Phenotypic analysis of the clones revealed that all expressed CD29, CD11b, and the NKH1 surface Ag. These results demonstrate that the CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones exhibit many of the functional characteristics of mature T cells, although they produce IL-2 and IFN-gamma and provide help for B cell differentiation less effectively than CD3+CD4+CD8- and CD3+CD4-CD8+ alpha beta T cell clones.  相似文献   

9.
Alloreactive murine CD8+ T cell clones secrete the Th1 pattern of cytokines   总被引:24,自引:0,他引:24  
A large panel of CD8+ mouse T cell clones expressed the cytokine synthesis pattern characteristic of Th1 clones. CD8+ clones synthesized IFN-gamma and lymphotoxin at levels similar to Th1 clones, whereas IL-2 was synthesized by only 50% of the clones and at significantly lower levels compared to Th1 clones. CD8+ clones also produced substantial amounts of granulocyte/macrophage-CSF, TY5, P500, and TNF-alpha which are expressed preferentially by Th1 clones and at lower levels by Th2 clones. The level of IL-3 produced by CD8+ clones was approximately 10% of that produced by Th1 and Th2 clones. Some CD8+ clones expressed low levels of the Th2-preferential product preproenkelphalin. None of the CD8+ clones expressed detectable levels of the Th2-specific products IL-4, IL-5, and P600, and the great majority did not express IL-6. The cytokine profile of CD8+ clones is representative of that secreted by activated normal CD8+ splenocytes, which includes IFN-gamma, low levels of IL-2 and IL-3 but no IL-4 or IL-5. Inasmuch as many Th1/Th2 functions are cytokine mediated, the striking similarity of the Th1 and CD8+ cytokine secretion patterns helps to explain why these two cell types share certain functions such as DTH, and also suggests that further common functions may be discovered in the future.  相似文献   

10.
11.
The expression of lymphokine mRNA by human CD4+CD45R+ and CD4+CD45R- Th cells was assessed after mitogen stimulation. These Ag have previously been shown to relate closely to virgin and primed T cells, respectively. CD4+CD45R+ (virgin) and CD4+CD45R- (primed) cell fractions were isolated by sorting double-labeled cells with a fluorescence-activated cell sorter. CD4+CD45R+ cells produced high levels of IL-2 mRNA when stimulated with either PMA together with calcium ionophore, or with PHA, but they expressed only trace quantities of mRNA for IL-4 or IFN-gamma. In contrast, CD4+CD45R- cells produced high levels of mRNA for IL-2, IL-4, and IFN-gamma. After 14 days of continuous culture, CD4+CD45R+ Th cells lost expression of the CD45R Ag, but gained high level expression of CDw29, such that they were indistinguishable from the cell population which originally expressed this Ag. At the same time, they acquired the ability to synthesize IL-4 mRNA. It seemed likely that the broad lymphokine profile of primed Th cells might mask clonal heterogeneity. Analysis of 122 CD4+ T cell clones showed that all of them synthesized IL-2 mRNA. One clone failed to express IL-4 mRNA, but did produce those for IL-2 and IFN-gamma. A total of 34 of the clones was investigated to determine expression of IFN-gamma mRNA; two of these clones were negative for IFN-gamma mRNA, and both expressed IL-2 and IL-4 message. These data suggest that while fresh virgin and primed peripheral blood T cells show a clear resolution of lymphokine production, a simple subdivision of human CD4+ T cell clones on the basis of their lymphokine production (such as that reported for mouse Th cell clones) is not possible.  相似文献   

12.
A filler cell-free limiting-dilution microculture system has been developed for the expansion and differentiation of a high proportion of single CD4-CD8+ T cells into cytolytic T cell (CTL) clones. The stimulus used was PMA together with the calcium ionophore ionomycin. The growth and differentiation factors were rIL-2, together with either a Con A-stimulated spleen cell supernatant (CAS) or rIFN-gamma. CTL activity was monitored by an autoradiographic 111In-release assay. With CAS and rIL-2 present, 50% of all potential precursors (CTL-p) produced cytolytic clones. Substitution of rIFN-gamma for CAS gave a similar efficiency with up to 42% of CTL-p producing cytolytic clones. rIL-2 alone allowed only a small proportion (6%) of CD4-CD8+ T cells to become cytolytic clones. Addition of rIL-2 and rIFN-gamma at various stages of the culture demonstrated that IL-2 was required throughout, but exogenous IFN-gamma was required only during the early stages. It is concluded that for at least 40% of all CTL-p, the lymphokines IL-2 and IFN-gamma are essential and act in synergy to induce proliferation and differentiation into CTL.  相似文献   

13.
We used an adoptive transfer system and CD4+ T cell clones with defined lymphokine profiles to examine the role of CD4+ T cells and the types of lymphokines involved in the development of B cell memory and affinity maturation. Keyhole limpet hemocyanin (KLH)-specific CD4+ Th2 clones (which produce IL-4 and IL-5 but not IL-2 or IFN-gamma) were capable of inducing B cell memory and affinity maturation, after transfer into nude mice or after transfer with unprimed B cells into irradiated recipients and immunization with TNP-KLH. In addition, KLH-specific Th1 clones, which produce IL-2 and IFN-gamma but not IL-4 or IL-5, were also effective in inducing B cell memory and high affinity anti-TNP-specific antibody. The induction of affinity maturation by Th1 clones occurred in the absence of IL-4, as anti-IL-4 mAb had no effect on the affinity of the response whereas anti-IFN-gamma mAb completely blocked the response. Th1 clones induced predominantly IgG2a and IgG3 antibody, although Th2 clones induced predominantly IgG1 and IgE antibody. We thus demonstrated that some Th1 as well as some Th2 clones can function in vivo to induce Ig synthesis. These results also suggest that a single type of T cell with a restricted lymphokine profile can induce both the terminal differentiation of B cells into antibody secreting cells as well as induce B cell memory and affinity maturation. Moreover, these results suggest that B cell memory and affinity maturation can occur either in the presence of Th2 clones secreting IL-4 but not IFN-gamma, or alternatively in the presence of Th1 clones secreting IFN-gamma but not IL-4.  相似文献   

14.
15.
Interleukin (IL)-4 has been shown to be secreted simultaneously with IL-2 and interferon (IFN)-gamma by the majority of CD4+ human T cell clones isolated and cultured using IL-2 as a growth factor. Moreover, IL-4 was found to be as efficient as IL-2 to promote the outgrowth of human T cell clones. In this study we have investigated the pattern of lymphokine production by human T cell clones isolated and cultured in IL-4. Most of the CD4+ T cell clones isolated in IL-4 were found to have the ability to simultaneously secrete IL-2, IL-4, and IFN-gamma upon activation. The T cell clones isolated in IL-4 produced, in general, more IL-4 and less IL-2 than the clones isolated and cultured in IL-2. This tendency did not appear to be a stable feature inasmuch as when representative CD4+ T cell clones were split and cultured in either IL-2 or IL-4, the clones in IL-2 secreted more IL-2 and less IL-4 than the same cells cultured in IL-4. These results indicate that the isolation and culture of human CD4+ T cells in IL-4 did not lead to an "irreversible" development of these cells into Th-1- or Th-2-like cells. Clones isolated in IL-4 responded better to IL-4 than they did to IL-2. On the other hand, T cell clones from the same donor isolated in IL-2 showed the reverse pattern since these latter cells were found to respond better to IL-2 than to IL-4. Furthermore, "nonresponsiveness" of a T cell clones in a [3H]TdR assay to either IL-2 or IL-4 is not a stable feature since clones, unresponsive to a particular lymphokine, could be adapted to become responsive.  相似文献   

16.
17.
alpha CD3 induced the generation of activated killer cells from resting T cells. Pretreatment of the splenic responders with PMA, a phorbol ester, depleted protein kinase C and induced unresponsiveness to the generation of alpha CD3-induced activated killer (CD3-AK) cells. Addition of exogenous IL-4 (1 U/ml) restored the cytotoxic response, with the maximal effect achieved with 30 to 100 U/ml. The phenotypes of CD3-AK cells maintained in IL-2 or in IL-4, with or without PMA, were the same: Thy1+ and CD8+. These results were reproduced with purified T cells and purified CD8+ cells, indicating that both the effectors and precursors were CD8+ cells and IL-4 had a selective effect to upregulate the CD8+ cells. Similar results were obtained by using SSP (staurosporine), another PKC inhibitor. At 2 days prior to testing, switching the lymphokine added to 2-week PMA- and IL-2-maintained CD3-AK cells reversed their cytolytic activity: switching from IL-2 to IL-4 restored cytolytic activity, and switching from IL-4 to IL-2 reduced cytolytic activity. The cytolytic activity of these CD3-AK cells correlated with their ability to produce BLT-esterase. In the absence of PMA, CD3-AK cells cultured in either IL-2 or IL-4 were cytolytic and contained high levels of BLT-esterase. In contrast, in the presence of PMA, only the IL-4-maintained CD3-AK cells were cytolytic and produced significant amounts of BLT-esterase. The effect of IL-4 was abrogated by the alpha IL-4 antibody 11B11, which reduced the cytolytic activity of CD3-AK and the ability to produce BLT-esterase. The requirement of IL-2 was less stringent and its major role appeared to be maintaining the cell growth. These findings indicate that IL-4 may participate in the regulation of a PKC-independent pathway for the generation of CD3-AK cells by regulating the production of cytolytic granules.  相似文献   

18.
In the present study, we have investigated the ability of human T cells to secrete IL-2, IL-4, and IFN-gamma. IL-4 and IFN-gamma were quantified with enzymatic immunoassays and IL-2 with a biologic assay by using the murine IL-2-dependent cell line CTLL-2. PBL, stimulated with Con A or with a combination of the phorbol ester 13-O-tetradecanoylphorbol-12-acetate and the Ca2+ ionophore A23187 secreted IL-2, IL-4, and IFN-gamma. The kinetics of the secretion of the three lymphokines was investigated with two CD4+ clones; one (GEO-2) that produced IL-2, IL-4, and IFN-gamma and another (HY640), that produced only IL-2 and IFN-gamma. Significant IL-2, IL-4, and IFN-gamma production was observed after only 8 h of activation. Maximal levels of IL-2 and IL-4 were found 20 h after the onset of the stimulation which subsequently decreased. In contrast, IFN-gamma levels continued to increase in a period up to 40 h and then leveled off. In spite of these differences in secretion, the kinetics of accumulation of mRNA did not differ. The IL-2, IL-4, and IFN-gamma mRNA were detectable 2 h after stimulation and continued to accumulate for a period up to 20 h. In a series of 22 CD4+ clones, 21 were able to secrete all three lymphokines upon stimulation. Almost all CD8+ clones were able to produce IL-2 and IFN-gamma, but only six of the 23 CD8+ T cell clones secreted IL-4. In addition, five CD4+ (allo)antigen-specific T cell clones were tested for IL-2, IL-4, and IFN-gamma secretion upon specific stimulation. Two alloantigen-specific and two tetanus toxoid-specific T cell clones secreted IL-2, IL-4, and IFN-gamma simultaneously, whereas one alloantigen-specific T cell clone secreted IL-2 and IFN-gamma, but not IL-4. A supernatant of the CD4+ T cell clone GEO-2, that contained high levels of IFN-gamma and IL-4, was unable to induce the low affinity receptor for IgE, CD23, on a Burkitt lymphoma cell line. However, after separation of IL-4 from IFN-gamma by using HPLC, the IL-4-containing fraction-induced CD23, which could be blocked by the fraction that contained IFN-gamma and by a polyclonal rabbit anti-IL-4 antiserum. Finally, the partly purified IL-4, that was devoid of IL-2, promoted the growth of the clone GEO-2.  相似文献   

19.
Activated CD4+ T cells can be classified into distinct subsets; the most divergent among them may be considered to be the IL-2 and IFN-gamma-producing Th1 clones and the IL-4 and IL-5-producing Th2 clones. Because Th1 and Th2 clones can usually be detected only after several months of culture, we used conditions that modulate the IL-2 and IL-4 production in short term culture. Here we show that freshly isolated and subsequently in vitro-activated CD4+ T cells that were cultured for 11 days with rIL-2 and restimulated showed a IFN-gamma+ IL-2+ IL-3+ IL-4- IL-5- pattern. Because these cells were not capable of providing B cell help for IgG1, IgG2a, or IgE in an APC- and TCR-dependent T-B cell assay, they expressed a phenotype typical for most Th1 clones. In contrast, activated T cells that were cultured for 11 days with IL-2 plus a mAb to CD3 and then restimulated produced a IFN-gamma- IL-2- IL-3+ IL-4+ IL-5+ pattern. These cells were capable of providing B cell help for IgG1, IgG2a, and IgE synthesis and thus presented a phenotype typical for Th2 clones. Similar results were observed when mitogenic mAb to Thy-1.2 or to framework determinants of the alpha beta TCR were used. The induction of Th1- and Th2-like cells did not depend on the relative expression of CD44 or CD45 by the T cells before activation in vitro. Because the incubation of activated T cells with anti-CD3/TCR mAb induced high unrestricted lymphokine production, the latter might be responsible for the Th2-like lymphokine pattern observed after restimulation. To address this point, TCR V beta 8+ and V beta 8- T cell blasts were co-cultured in the presence of mAb to V beta 8. After restimulation, V beta 8+ cells had a IL-4high IL-2low phenotype and V beta 8- cells had a IL-4low IL-2high phenotype. This demonstrates that TCR ligation but not lymphokines alone are capable of inducing Th2-like cells, and this points out a central role for the TCR in the generation of T cell subsets.  相似文献   

20.
In order to test whether tumor necrosis factors alpha (TNF-alpha) or beta (TNF-beta, also known as lymphotoxin) are involved in the lysis of target cells by cytolytic T lymphocytes, we probed for the presence of the TNF mRNAs in several quiescent and activated CTL clones. No TNF mRNA could be found in constitutively cytolytic Lyt-2+ clones, and only two out of three clones tested accumulated TNF mRNA after stimulation with phorbol myristate acetate and ionomycin. Of two L3T4+ clones that can be induced to become cytolytic by a combination of antigen and IL-1, only one accumulated TNF-beta mRNA in the process. The PC60 rat X mouse T cell hybrid, which becomes cytolytic in response to a combination of IL-1 and IL-2, also failed to accumulate TNF mRNA after stimulation with these agents. Our results strongly suggest that TNF-alpha or -beta are not necessary agents of the cytolytic activity exhibited by antigen-specific T lymphocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号