首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
X Zhao  S Nadji  J L Kao    J S Taylor 《Nucleic acids research》1996,24(8):1554-1560
Irradiation of the dinucleotide TpdA and TA-containing oligonucleotides and DNA produces the TA* photoproduct which was proposed to be the [2+2] cyclo-addition adduct between the C5-C6 double bonds of the T and the A [Bose,S.N., Kumar,S., Davies,R.J.H., Sethi,S.K. and McCloskey,J.A. (1984) Nucleic Acids Res. 12, 7929-7947]. The proposed structure was based on a variety of spectroscopic and chemical degradation studies, and the assignment of a trans-syn-I stereochemistry was based on an extensive 1H-NMR and molecular modeling study of the dinucleotide adduct [Koning,T.M.G., Davies,R.J.H. and Kaptein,R. (1990) Nucleic Acids Res. 18, 277-284]. However, a number of properties of TA* are not in accord with the originally proposed structure, and prompted a re-evaluation of the structure. To assign the 13C spectrum and establish the bond connectivities of the TA* photoproduct of TpdA [d(TpA)*], 1H-13C heteronuclear multiple-quantum coherence (HMQC) and heteronuclear multiple bond correlation (HMBC) spectra were obtained. The 13C shifts and connectivities were found to be inconsistent with the originally proposed cyclobutane ring fusion between the thymine and adenine, but could be explained by a subsequent ring-expansion reaction to give an eight-membered ring valence isomer. The new structure for the d(TpA)* resolves the inconsistencies with the originally proposed structure, and could have a stereochemistry that arises from the anti, anti glycosyl conformation found in B form DNA.  相似文献   

2.
J S Taylor  D S Garrett  M P Cohrs 《Biochemistry》1988,27(19):7206-7215
The preparation, spectroscopic investigation, structure determination, conformational analysis, and modeling of the Dewar pyrimidinone photoproduct of thymidylyl-(3'----5')-thymidine, previously referred to as TpT3 [Johns, H. E., Pearson, M. L., LeBlanc, J. C., & Heilleiner, C. W. (1964) J. Mol. Biol. 9, 503-524], is described. TpT3 was prepared in quantitative yield by photolysis of an aqueous solution of the (6-4) photoproduct of TpT with Pyrex-filtered medium-pressure mercury arc light. TpT3 was analyzed by FAB MS, IR, UV, and 1H, 13C, and 31P NMR spectroscopy. The spectroscopic data led to the conclusion that TpT3 results from the photoisomerization of the pyrimidinone ring of the (6-4) product of TpT to its Dewar valence isomer. Torsion angle and interproton distance information derived from coupling constants and NOE data was used to constrain ring conformation searches by utilizing the SYBYL molecular modeling program subroutine SEARCH. Sets of angles derived from the ring search procedure were then used to construct structures whose geometries were optimized by the energy-minimization subroutine MAXIMIN. A two-state model for the solution-state structure of the Dewar photoproduct was chosen which was energetically sound, fit the experimental coupling constants with an RMS deviation of 1.15 Hz, and was consistent with the NOE data. The model for the Dewar photoproduct was compared to a model for the (6-4) photoproduct and the TpT subunits of the Dickerson dodecamer structure by a least-squares fitting procedure. It was concluded that the Dewar photoproduct more closely resembles a B-form TpT unit than does the (6-4) photoproduct.  相似文献   

3.
A monoclonal antibody (DEM-1) specific for the Dewar photoproduct is used for detection and quantification of photolesions in DNA. To help understand the molecular recognition of damaged DNA by the antibody protein, we have cloned and sequenced the variable region genes of DEM-1. We have also prepared Fab fragments of DEM-1 (DEM1Fab), and synthesized two kinds of 3'-biotinylated oligonucleotides of different lengths containing a central Dewar photoproduct of TpT to analyze the effects of the antigen size on the binding rates by means of surface plasmon resonance (SPR). Results obtained from SPR analyses suggest that DEM1Fab may recognize tetranucleotide unit as the epitope.  相似文献   

4.
Induction of several SOS functions by mitomycin C, bleomycin or thermal treatment of a recA441 mutant growing under nitrate respiration conditions was studied in Escherichia coli. Mitomycin C caused inhibition of cell division, induction of prophages and expression of umuC gene but like in aerobically growing cells, it did not trigger the cessation of cell repiration. On the contrary, both recA+ and recA441 cultures either treated with bleomycin or incubated at 42°C failed to induce any of the different SOS functions cited above.Furthermore, after bleomycin addition or thermal treatment both recA+ and recA441 cultures did not present any variation in the cellular ATP level, contrary to what happens under aerobic growth. The blocking of the expression of some SOS functions under nitrate respiration conditions is not an irreversible process because cells incubated under these anaerobic conditions were able to induce the SOS system when changed to an aerobic medium 30 min after the SOS-inducing treatment had been applied.  相似文献   

5.
Several strains of E. coli were grown on different sources of carbon and β-galactosidase activity as well as intracellular and extracellular concentrations of c-AMP were determined. There was a good (inverse) correlation between extracellular concentrations of c-AMP and the intensity of catabolite repression, whereas the relationship between intracellular c-AMP levels and catabolite repression was not clear-cut.  相似文献   

6.
7.
Cells of Escherichia coli which enter a phase of starvation for Pi induce the synthesis of the nucleotide guanosine 3',5'-bispyrophosphate (ppGpp). This induction is relA independent but depends on the spoT gene product. A mutant unable to produce ppGpp is impaired in the expression of two genes which belong to the pho regulon, a defect which is dependent on the product of spoT. We suggest that ppGpp is essential for the proper induction of the genes which belong to the pho regulon.  相似文献   

8.
9.
5'(3')-Deoxyribonucleotidase is a ubiquitous enzyme in mammalian cells whose physiological function is not known. It was earlier purified to homogeneity from human placenta. We determined the amino acid sequences of several internal peptides and with their aid found an expressed sequence tag clone with the complete cDNA for a murine enzyme of 23.9 kDa. The DNA was cloned into appropriate plasmids and introduced into Escherichia coli and ecdyson-inducible 293 and V79 cells. The recombinant enzyme was purified to homogeneity from transformed E. coli and was found to be identical with the native enzyme. After induction with ponasterone, the transfected mammalian cells showed a gradual increase of enzyme activity. A human expressed sequence tag clone contained a large part of the cDNA of the human enzyme but lacked the 5'-end corresponding to 51 amino acids of the murine enzyme. Several polymerase chain reaction-based approaches to find this sequence met with no success. A mouse/human hybrid cDNA that had substituted the missing human 5'-end with the corresponding mouse sequence coded for a fully active enzyme.  相似文献   

10.
Culture of a wild-type strain of Escherichia coli in the presence of cyclic AMP leads to an impairment of uracil uptake. Half maximum inhibition of uracil uptake was observed at 1.5 mM cyclic AMP. The effect seems to be specific since no inhibition was found in cultures supplemented with ATP, ADP or 5'-AMP. Similarly the inhibition was not observed in cultures of a mutant deficient in the cyclic AMP receptor protein. The inhibition in uracil uptake, found in bacteria cultured in the presence of cyclic AMP, is not a consequence of a reduction in the growth rate. On the other hand, this inhibition was observed only in cultures containing glucose or pyruvate as carbon source.  相似文献   

11.
The net synthesis of cAMP by an adenine auxotroph of Escherichia coli was measured by assaying the incorporation of tritium from [3H]-adenine into cyclic [3H] AMP during exponential growth. Synthesis of cAMP ceased abruptly when glucose was added to cells growing in glycerol and then recovered to an intermediate rate of synthesis after 0.5–1.0 generation. Cyclic AMP appeared to be synthesized from a precursor pool that turned over more rapidly than total cellular ATP. The rates of cAMP synthesis measured by this technique are compatible with the cellular levels of cAMP previously measured in this strain(3).  相似文献   

12.
Escherichia coli helicase II, product of the uvrD gene, is a single-stranded DNA-dependent nucleoside 5'-triphosphatase with helicase activity. As a DNA-dependent ATPase, helicase II translocates processively along single-stranded DNA (S. W. Matson, unpublished results). The direction of translocation has been determined using a helicase assay that directly measures the ability of helicase II to catalyze the displacement of a labeled DNA fragment from one end of a single-stranded linear DNA molecule. The translocation of helicase II along single-stranded DNA is unidirectional and in the 3' to 5' direction with respect to the DNA strand on which the enzyme is bound. A kinetic analysis of the displacement of a labeled DNA fragment annealed to a linear single-stranded DNA molecule is also consistent with unidirectional translocation in the 3' to 5' direction. These results are contrary to results previously obtained using an indirect helicase assay (Kuhn, B., Abdel-Monem, M., Krell, H., and Hoffmann-Berling, H. (1979) J. Biol. Chem. 254, 11343-11350).  相似文献   

13.
The penicillin tolerance exhibited by amino acid-deprived Escherichia coli has been previously proposed to be a consequence of the stringent response. Evidence indicating that penicillin tolerance is directly attributable to guanosine 3',5'-bispyrophosphate (ppGpp) overproduction and not to some other effect of amino acid deprivation is now presented. Accumulation of ppGpp in the absence of amino acid deprivation was achieved by the controlled overexpression of the cloned relA gene, which encodes ppGpp synthetase I. The overproduction of ppGpp resulted in the inhibition of both peptidoglycan and phospholipid synthesis and in penicillin tolerance. The minimum concentration of ppGpp required to establish these phenomena was determined to be 870 pmol per mg (dry weight) of cells. This represented about 70% of the maximum level of ppGpp accumulated during the stringent response. Penicillin tolerance and the inhibition of peptidoglycan synthesis were both suppressed when ppGpp accumulation was prevented by treatment with chloramphenicol, an inhibitor of ppGpp synthetase I activation. Glycerol-3-phosphate acyltransferase, the product of plsB, was recently identified as the main site of ppGpp inhibition in phospholipid synthesis (R. J. Health, S. Jackowski, and C. O. Rock, J. Biol. Chem. 269:26584-26590, 1994). The overexpression of the cloned plsB gene reversed the penicillin tolerance conferred by ppGpp accumulation. This result supports previous observations indicating that the membrane-associated events in peptidoglycan metabolism were dependent on ongoing phospholipid synthesis. Interestingly, treatment with beta-lactam antibiotics by itself induced ppGpp accumulation, but the maximum levels attained were insufficient to confer penicillin tolerance.  相似文献   

14.
We compared the removal of pyrimidine(6-4)pyrimidone photoproducts [(6-4) photoproducts] and cyclobutane pyrimidine dimers (CPDs) from the genome of repair-proficient Escherichia coli, using monoclonal antibodies specific for each type of lesion. We found that (6-4) photoproducts were removed at a higher rate than CPDs in the first 30 min following a moderate UV dose (40 J/m2). The difference in rates was less than that typically reported for cultured mammalian cells, in which the removal of (6-4) photoproducts is far more rapid than that of CPDs.  相似文献   

15.
The recA+ lexA+-dependent induction of four Escherichia coli SOS proteins was readily observed by two-dimensional gel analysis. In addition to the 38-kilodalton (kDa) RecA protein, which was induced in the greatest amounts and was readily identified, three other proteins of 115, 62, and 12 kDa were seen. The 115-kDa protein is the product of the uvrA gene, which is required for nucleotide excision repair and has previously been shown to be induced in the SOS response. The 62-kDa protein, which was induced to high intracellular levels, is the product of recN, a gene required for recBC-independent recombination. The recA and recN genes were partially derepressed in a recBC sbcB genetic background, a phenomenon which might account for the recombination proficiency of such strains. The 12-kDa protein has yet to be identified.  相似文献   

16.
The capacity of Escherichia coli poly(A) polymerase to adenylylate the 3'-OH residue of a variety of nucleosides, nucleoside 5'-phosphates and dinucleotides of the type nucleoside(5')oligophospho(5')nucleoside is described here for the first time. Using micromolar concentrations of [alpha-32P]ATP, the following nucleosides/nucleotides were found to be substrates of the reaction: guanosine, AMP, CMP, GMP, IMP, GDP, CTP, dGTP, GTP, XTP, adenosine(5')diphospho(5')adenosine (Ap2A), adenosine (5')triphospho(5')adenosine (Ap3A), adenosine(5')tetraphospho(5')adenosine (Ap4A), adenosine(5')pentaphospho(5')adenosine (Ap5A), guanosine(5')diphospho(5') guanosine (Gp2G), guanosine(5')triphospho(5')guanosine (Gp3G), guanosine(5')tetraphospho(5')guanosine (Gp4G), and guanosine(5')pentaphospho(5')guanosine (Gp5G). The synthesized products were analysed by TLC or HPLC and characterized by their UV spectra, and by treatment with alkaline phosphatase and snake venom phosphodiesterase. The presence of 1 mM GMP inhibited competitively the polyadenylylation of tRNA. We hypothesize that the type of methods used to measure polyadenylation of RNA is the reason why this novel property of E. coli poly(A) polymerase has not been observed previously.  相似文献   

17.
The major initial product of riboflavin- and methylene blue-mediated photosensitization of 2'-deoxyguanosine (dG) in oxygen-saturated aqueous solution has previously been identified as 2-amino-5-[(2-deoxy-beta-D-erythro-pentofuranosyl)amino] 4H-imidazol-4-one (dlz). At room temperature in aqueous solution dlz decomposes quantitatively to 2,2-diamino-4-[(2-deoxy-beta-D-erythro- pentofuranosyl)amino]-5(2H)-oxazolone (dZ). The data presented here show that the same guanine photooxidation products are generated following riboflavin- and methylene blue-mediated photosensitization of thymidylyl-(3',5')-2'-deoxyguanosine [d(TpG)]. As observed for the monomers, the initial product, thymidylyl-(3',5')-2-amino-5-[(2-deoxy- beta-D-erythro-pentofuranosyl)amino]-4H-imidazol-4-one [d(Tplz)], decomposes in aqueous solution at room temperature to thymidylyl-(3',5')-2,2-diamino-4- [(2-deoxy-beta-D-erythro-pentofuranosyl)amino]-5(2H)-oxazolone [d(TpZ)]. Both modified dinucleoside monophosphates have been isolated by HPLC and characterized by proton NMR spectrometry, fast atom bombardment mass spectrometry, chemical analyses and enzymatic digestions. Among the chemical and enzymatic properties of these modified dinucleoside monophosphates are: (i) d(Tplz) and d(TpZ) are alkali-labile; (ii) d(Tplz) reacts with methoxyamine, while d(TpZ) is unreactive; (iii) d(Tplz) is digested by snake venom phosphodiesterase, while d(TpZ) is unaffected; (iv) relative to d(TpG), d(TpZ) and d(Tplz) are slowly digested by spleen phosphodiesterase; (v) d(Tplz) and d(TpZ) can be 5'-phosphorylated by T4 polynucleotide kinase. The first observation suggests that dlz and dZ may be responsible for some of the strand breaks detected following hot piperidine treatment of DNA exposed to photosensitizers.  相似文献   

18.
19.
Y Oda 《Mutation research》1987,183(2):103-108
The inducibility of SOS responses by 5-fluorouracil (5-FU), which has been used as an antitumor drug, was studied in Escherichia coli cells which have different DNA repair capacities for UV lesions. Expression of the umuC gene was apparently induced by 5-FU in the wild-type and uvrA strains, but not in lexA and recA strains. The inducibility of the umuC gene by 5-FU, the metabolite of which inhibits thymidylate synthetase, was abolished in cultures containing deoxythymidine monophosphate which is converted from deoxyuridine monophosphate by thymidylate synthetase. These results suggest that 5-FU may exert its SOS inducibility by inhibiting thymidylate synthetase and then disturbing DNA metabolism but not by incorporating 5-FU residues into RNA. Further, 5-FU weakly induced mutations in E. coli.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号