首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The development and evolution of bristle patterns in Diptera   总被引:5,自引:0,他引:5  
The spatial distribution of sensory bristles on the notum of different species of Diptera is compared. Species displaying ancestral features have a simple organization of randomly distributed, but uniformly spaced, bristles, whereas species thought to be more derived bear patterns in which the bristles are aligned into longitudinal rows. The number of rows of large bristles on the scutum was probably restricted to four early on in the evolution of cyclorraphous Brachyceran flies. Most species have stereotyped patterns based on modifications of these four rows. The possible constraints placed upon the patterning mechanisms due to growth and moulting within the Diptera are discussed, as well as within hemimetabolous insects. The holometabolic life cycle and the setting aside of groups of imaginal cells whose function is not required during the growth period, may have provided the freedom necessary for the evolution of elaborate bristle patterns. We briefly review the current state of knowledge concerning the complex genetic pathways regulating achaete-scute gene expression and bristle pattern in Drosophila melanogaster, and consider mechanisms for the genetic regulation of the bristle patterns of other species of Diptera.  相似文献   

6.
In Drosophila, imaginal wing discs, Wg and Dpp, play important roles in the development of sensory organs. These secreted growth factors govern the positions of sensory bristles by regulating the expression of achaete-scute (ac-sc), genes affecting neuronal precursor cell identity. Earlier studies have shown that Dally, an integral membrane, heparan sulfate-modified proteoglycan, affects both Wg and Dpp signaling in a tissue-specific manner. Here, we show that dally is required for the development of specific chemosensory and mechanosensory organs in the wing and notum. dally enhancer trap is expressed at the anteroposterior and dorsoventral boundaries of the wing pouch, under the control of hh and wg, respectively. dally affects the specification of proneural clusters for dally-sensitive bristles and shows genetic interactions with either wg or dpp signaling components for distinct sensory bristles. These findings suggest that dally can differentially regulate Wg- or Dpp-directed patterning during sensory organ assembly. We have also determined that, for pSA, a bristle on the lateral notum, dally shows genetic interactions with iroquois complex (IRO-C), a gene complex affecting ac-sc expression. Consistent with this interaction, dally mutants show markedly reduced expression of an iro::lacZ reporter. These findings establish dally as an important regulator of sensory organ formation via Wg- and Dpp-mediated specification of proneural clusters.  相似文献   

7.
8.
9.
P Cubas  J Modolell 《The EMBO journal》1992,11(9):3385-3393
The Drosophila adult epidermis displays a stereotyped pattern of bristles and other types of sensory organs (SOs). Its generation requires the proneural achaete (ac) and scute (sc) genes. In the imaginal wing disc, the anlage for most of the thoracic and wing epidermis, their products accumulate in groups of cells, the proneural clusters, whose distribution prefigures the adult pattern of SOs. These proteins then induce the emergence of SO mother cells (SMCs). Here, we show that the extramacrochaetae (emc) gene, an antagonist of the proneural function, is another agent that contributes to SO positioning. In the wing disc, emc is expressed in a complex and evolving pattern. SMCs appear not only within proneural clusters but also within minima of emc expression. When one of these spatial restrictions is eliminated, by ubiquitously expressing ac-sc, SMCs still emerge within minima of emc. When in addition, the other spatial restriction is reduced by decreasing emc expression, many ectopic SMCs emerge in a relatively even spaced and less constant pattern. Thus, the heterogeneous distribution of the emc product is one of the elements that define the positions where SMCs arise. emc probably refines SMC (and SO) positioning by reducing both the size of proneural clusters and the number of cells within clusters that can become SMCs.  相似文献   

10.
Simpson P  Marcellini S 《Heredity》2006,97(3):148-156
A long-standing problem in evolutionary biology is how genetic variation arises within populations and evolves to make species anatomically different. Many of the morphological differences in body plans between animal groups are thought to result from changes in gene expression during development. The rules governing the structure and evolution of cis-regulatory gene sequences are unknown, however, and the evolution of traits between closely related species remains relatively unexplored at a molecular level. To study the evolution of gene regulation, it is necessary to find a tractable trait that varies between species and for which the genetic regulation is well known in at least one of the species. The stereotyped, two-dimensional pattern of bristles on the thorax of Drosophila has been intensively investigated and is due to a precise spatial expression of proneural genes. Other species of flies have different bristle patterns and so comparisons between them provide a good paradigm for the study of changes in gene regulation. Here, we review the current state of understanding of these changes.  相似文献   

11.
12.
13.
Furman DP  Bukharina TA 《Ontogenez》2008,39(4):245-258
The Drosophila head and body have a regular species-specific pattern of strictly defined number of external sensory organs--macrochaetae (large bristles). The pattern constancy and relatively simple organization of each bristle organ composed of only four specialized cells makes macrochaetae a convenient model to study the developmental patterns of spatial structures with a fixed number of elements in specific positions as well as the mechanisms of cell differentiation. The experimental data on the major genes and their products controlling three stages of macrochaetae development--the emergence of proneural clusters in the imaginal disc ectoderm, the precursor cell determination in the proneural clusters, and the specialization of cells of the definitive sensory organ--were reviewed. The role of the achaeta-scute gene complex, EGFR and Notch signaling, and selector genes in these processes was considered. Analysis of published data allowed us to propose an integrated diagram of the system controlling macrochaetae development in D. melanogaster.  相似文献   

14.
Cells in the neurectoderm of Drosophila face a choice between neural and epidermal fates. On the notum of the adult fly, neural cells differentiate sensory bristles in a precise pattern. Evidence has accumulated that the bristle pattern arises from the spatial distribution of small groups of cells, proneural clusters, from each of which a single bristle will result. One class of genes, which includes the genes of the achaete-scute complex, is responsible for the correct positioning of the proneural clusters. The cells of a proneural cluster constitute an equivalence group, each of them having the potential to become a neural cell. Only one cell, however, will adopt the primary, dominant, neural fate. This cell is selected by means of cellular interactions between the members of the group, since if the dominant cell is removed, one of the remaining, epidermal, cells will switch fates and become neural. The dominant cell therefore prevents the other cells of the group from becoming neural by a phenomenon known as lateral inhibiton. They, then, adopt the secondary, epidermal, fate. A second class of genes, including the gene shaggy and the neurogenic genes mediate this process. There is some evidence that a proneural cluster is composed of a small number of cells, suggesting a contact-based mechanism of communication. The molecular nature of the protein products of the neurogenic genes is consistent with this idea.  相似文献   

15.
The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ac/sc genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ac/sc genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we find that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Tribolium and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Tribolium proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-ase is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Tribolium ac/sc genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.  相似文献   

16.
17.
Summary The arrangement of bristles on a leg segment of the fruitflyDrosophila melanogaster was studied in various mutants that have abnormal numbers of bristles on this segment. Eighteen mutations at six different genetic loci were analyzed, plus five double or triple mutant combinations. Recessive mutations at theachaete-scute locus were found to affect distinct groups of bristles:achaete mutations remove mechanosensory bristles, whereasscute mutations remove mainly chemosensory bristles. Mechanosensory bristles remain uniformly spaced along the longitudinal axis unless their number decreases below a certain threshold, suggesting that spacing is controlled by cell interactions that cannot function when bristle cells are too far apart. Above a certain threshold, bristle spacing and alignment both become irregular, perhaps due to excessive force from these same interactions. Chemosensory bristles occupy definite positions that are virtually unaffected by removal of individual bristles from the array. Extra chemosensory bristles develop only near the six normal sites. At two of the six sites the multiple bristles tend to exhibit uniform longitudinal spacing — a property confined to mechanosensory bristles in wild-type flies. To explain the various mutant phenotypes the following scheme is proposed, with different mutations directly or indirectly affecting each step: (1) spots and stripes are demarcated within the pattern area, (2) one bristle cell normally arises within each spot, multiple bristle cells within each stripe, (3) incipient bristle cells inhibit neighboring cells from becoming bristle cells, and (4) the bristle cells within each stripe become aligned to form rows and then repel one another to generate uniform spacing.  相似文献   

18.
19.
20.
Summary The lineages of cells on the second-leg basitarsus ofDrosophila melanogaster were analyzed by examining gynandromorphs andMinute mosaics. Bracts lie proximal to bristles on the adult basitarsus, yet bract precursor cells were found to originate lateral to bristle precursor cells. In 6 of the 8 longitudinal rows of bristles on this segment, the bract cells arise ventral to the bristle cells; in the others they arise dorsally. The lateral cell origins are interpreted as reflecting a pattern of lateral cell movements associated with evagination of the leg disc. An unusual discrepancy was observed in the relative frequencies of male vs. female bracts and bristles in gynandromorphs. The discrepancy suggests that there is a cell-autonomous sexual difference in either the time at which cells begin moving during evagination or the speed with which they move.On the basis of the results, it is reasoned that the bristle pattern of the basitarsus does not originate in its final form. Prior to evagination, the bristle cells of each row are apparently closer together than in the final pattern, and the rows are farther apart. Evidence is presented which suggests that the bristle cells of each row may originally be arranged in a jagged line which is later straightened by cell movements.The two locations where the anterior/posterior compartment boundary of the second leg passes through the basitarsus were found to vary relative to the bristle pattern. If this boundary is assumed to be a fixed line of positional values, then the extent of the observed variability — which is estimated to be ± 1 or 2 cell diameters — provides a measure of the precision of patterning around the circumference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号