首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
There is considerable evidence suggesting that compartmentalized functional pools of cholesterol in the liver contribute differently to the formation of bile acids as the precursor. The present paper deals with the incorporation of [1-14C]acetate and of [1,2-3H]cholesterol carried on lipoproteins (LDL and HDL) into biliary bile acids in perfused rat livers and bile-fistula rats. The results showed that endogenous cholesterol synthesized newly from [1-14C]acetate in the liver was incorporated into both cholic acid and chenodeoxycholic acid in a similar way, while exogenous lipoprotein-[1,2-3H]cholesterol delivered to hepatocytes from hepatic circulation was incorporated into chenodeoxycholic acid at a higher rate.  相似文献   

2.
In order to find an artificial internal standard compound for quantitative determination of bile acids by gas chromatography, 7α,12α-,7α, 12β-, 7β,12α- and 7β,12β-dihydroxy-5β-cholan-24-oic acids were chemically synthesized with cholic acid (1) as the first starting material. The gas chromatographie retention time of 7β,12β-dihydroxy-5β-cholan-24-oic acid (ββ-isomer) was more different from that of natural bile acids than the other isomers. Moreover, ββ-isomer was extracted in the same fraction as the bile acids from urine, and no urinary substance had the same retention time as ββ-isomer. No artifact was produced from ββ-isomer during the analysis procedure. It was concluded that the ββ-isomer is an internal standard compound with certain advantages for the quantitative determination of bile acids in urine by gas chromatography, irrespective of the recovery rate during the analysis procedure.  相似文献   

3.
Bile acid composition and content in the intestine and gallbladder of newborn and fetal rabbits were investigated. Unlike the circumstances in adult rabbits, the bile acids were conjugated with both taurine and glycine. The major bile acids of the fetus and newborn rabbit were cholic acid, chenodeoxycholic acid, and deoxycholic acid. This is different from the known bile acid composition of adult rabbits, in which deoxycholic acid is the major bile acid (> 80%). The proportion of chenodeoxycholic acid was higher in the fetal than in the newborn tissues. The total bile acid pool in the newborn was higher than in the fetus. In the fetus, large proportions of bile acids (60.9%) were associated with the gallbladder fraction, whereas in the newborn the bulk of the bile acids were found with the intestinal fraction (64.4%),  相似文献   

4.
Sarcosine conjugated ursodeoxycholic acid (SUDC) was synthesized and its intestinal absorption and metabolism were studied in rat and hamster. Intestinal absorption study using bile fistula rat shows that more than 90% of SUDC administered intraduodenally was excreted in the bile within 24 hr. No change of the administered bile acid was seen during the absorption from the intestine, the passage of the liver, and the excretion into the bile. When [24-14C]SUDC and [11,12-3H2]-ursodeoxycholic acid were administered orally to a hamster, more than 95% of both the administered 14C and 3H were recovered from the feces within 6 days. Most (77%) of the fecal 14C-labeled compound was SUDC, whereas 95% of the fecal 3H-labeled compound was unconjugated lithocholic acid. These results indicate that SUDC, unlike taurine or glycine conjugated bile acid, resists bacterial deconjugation and 7-dehydroxylation.  相似文献   

5.
Cholesterol catabolism to bile acids was stimulated in neonatal guinea pigs by feeding 1,11% cholestyramine (CT)-containing diet for 8 weeks. The animals were then switched to standard laboratory diet for an additional 4 weeks. At the end of the laboratory diet period: a) CT-pre-treated guinea pigs continued to excrete significantly higher (p<0.05) amounts of bile acids, b) the activity of hepatic 7α-hydroxylase was significantly elevated (p<0.01) in CT-pre-treated animals, and c) isolated hepatocytes from CT-pre-treated guinea pigs secreted significantly higher (p<0.05) amounts of bile acid when compared to controls during a 4-hour incubation. These data provide biochemical support for our contention that stimulation of cholesterol catabolism during neonatal life can have effects that persist into adult life.  相似文献   

6.
The effects of bile duct ligation on bile acid and cholesterol metabolism were examined in male Wistar strain rats. Quantitative and qualitative changes of bile acids and cholesterol in serum and urine occurred; beta-muricholic acid predominantly increased in serum and urine and the ratio of urinary cholic acid and beta-muricholic acid changed from about 5:3 on day 1 to about 1:8 on day 5 under biliary obstruction. The form of the increased urinary bile acids was mainly taurine-conjugated and partly sulfated. Under conditions of bile duct ligation on day 5, 14C-labeled 3 beta-hydroxy-5-cholenoic, lithocholic, and chenodeoxycholic acids were intragastrically administered to the rats after pretreatment with antibiotics and the metabolites of these three acids were investigated. 3 beta-Hydroxy-5-cholenoic acid was most efficiently converted to beta-muricholic acid. The present study strongly suggested the presence of an alternative metabolic pathway induced by bile duct ligation, which caused the change in composition of urinary bile acids, and especially the marked increase in beta-muricholic acid formation. A possible alternative pathway for bile acid biosynthesis under biliary obstruction in rats is postulated.  相似文献   

7.
K Kihira  T Kuramoto  T Hoshita 《Steroids》1976,27(3):383-393
The synthesis of (22R)- and (22S)-5beta-cholestane-3alpha,7alpha,12alpha,22,25-pentols is described. Bisnorcholyl aldehyde was prepared from cholic acid and converted into the cholestane-pentols by a Grignard reaction with 3-methyl-3-(tetrahydropyran-2-yloxy)-butynylmagnesium bromide followed by hydrogenation and acid hydrolysis. One of the synthetic pentols, the 22R-isomer was identical with a metabolite of 5beta-cholestane-3alpha,7alpha,25-triol formed in the rabbit.  相似文献   

8.
The conventional methods of gas liquid chromatography or mass spectrometry failed to be useful for the identification of the biliary 3β, 7α-hydroxychol--en-24-oic acid, a key intermediate of chenodeoxycholic acid biogenesis. It has been preliminarily reported that this acid in human bile was successfully identified by gas chromatography-mass spectrometry, after the methoxylation of its allyl alcohol group. Physical as well as spectral properties of the methoxylation products derived from the acid were reported, compared with those from its 7β-epimer.  相似文献   

9.
By the conventional methods of gas liquid chromatography (GLC) as well as mass spectrometry, 3β,7α-dihydroxychol-5-en-24-oic acid (Δ5-acid), a key intermediate of chenodeoxycholic acid biogenesis and its metabolic by-product, 3α,7α-dihydroxychol-4-en-24-oic acid (Δ4-acid) have not yet been identified as such probably due to thermal decomposition. However, taking advantage of the observation that they are readily methoxylated in methanoi containing a trace of acids, their individual methoxy-compounds were easily prepared and proved to be useful for their identification, even though they are present in minimal amounts as was the case with the human or hen bile. The present paper reported physical as well as spectral properties of the methoxy-compounds derived from methyl 3α,7α-dihydroxychol-4-en-24-oate, compared with those of its 3β-epimer  相似文献   

10.
Henry Danielsson 《Steroids》1973,22(5):667-676
Various taurine-conjugated bile acids were fed to rats at the 1%-level in the diet for 3 or 7 days and the effect on several hydroxylations involved in the biosynthesis and metabolism of bile acids was studied. The hydroxylations studied were all catalyzed by the microsomal fraction of liver homogenate fortified with NADPH. The 7α-hydroxylation of cholesterol was inhibited by feeding taurocholic acid, taurocheno-deoxycholic acid and taurodeoxycholic acid for 3 as well as 7 days. No marked inhibition was obtained with taurohyodeoxycholic acid or taurolithocholic acid. The 12α-hydroxylation of 7α-hydroxy-4-cholesten-3-one was inhibited after 3 as well as 7 days by all bile acids except taurohyodeoxycholic acid. With this acid a marked stimulation of 12α-hydroxylation was observed. The effects of the different bile acids on the 7α-hydroxylation of taurodeoxycholic acid were not very marked. The 6β-hydroxylation of lithocholie acid and taurochenodeoxycholic acid was stimulated by taurocholic acid and taurodeoxycholic acid. The reaction was inhibited by taurochenodeoxycholic acid, at least after 7 days. Taurohyodeoxycholic acid inhibited the 6β-hydroxylation slightly and taurolithocholic acid had no effect. The results were discussed in the light of present knowledge concerning mechanisms of regulation of formation and metabolism of bile acids and it was suggested that the mechanisms may be more complex than previously thought.  相似文献   

11.
The formation of alpha-muricholic acid and beta-muricholic acid from chenodeoxycholic acid was comparatively investigated in livers isolated from normal, streptozotocin-diabetic, and insulin-treated diabetic rats. [24-14C]Chenodeoxycholic acid or [24-14C]alpha-muricholic acid was infused into the perfused livers. There was no difference in biliary excretion of 14C among the different groups of rats after the infusion of each 14C-labelled bile acid. Biliary [14C]bile acids were chromatographed on a thin-layer plate and the distribution of radioactivity on the plate was measured by radioscanning. In the diabetic group, the formation ratio of alpha-muricholic acid and beta-muricholic acid from [24-14C]chenodeoxycholic acid and also that of beta-muricholic acid from [24-14C]alpha-muricholic acid were much smaller than in the normal group. Treatment of the diabetic group with insulin cancelled the difference in the infusion of each [24-14C]bile acid. The results indicate that not only 6 beta-hydroxylation of chenodeoxycholic acid to alpha-muricholic acid but also 7-epimerization of the latter acid to beta-muricholic acid is suppressed in an insulin-deficient state in rats.  相似文献   

12.
The effect of dietary 7 beta-methyl-cholic acid [0.075% in rodent chow (6.4 mg/animal per day)] on cholesterol and bile acid metabolism was studied and compared with that of cholic acid in the hamster. Following oral administration of 7 beta-methyl-cholic acid for 3 weeks, the glycine-conjugated bile acid analog became a major constituent of gallbladder bile. Biliary cholic acid concentration decreased significantly, while that of chenodeoxycholic acid remained unchanged. Serum and liver cholesterol levels were increased by dietary 7 beta-methyl-cholic acid and by cholic acid. Hepatic microsomal HMG-CoA reductase activity was inhibited (30% of the control value) by both bile acids; cholesterol 7 alpha-hydroxylase activity was not affected. In chow controls and cholic acid-fed animals, bacterial 7-dehydroxylation of [14C]chenodeoxycholic acid and [14C]cholic acid was nearly complete. In contrast, dietary 7 beta-methyl-cholic acid effectively prevented the 7-dehydroxylation of the two primary bile acids. These results show that dietary 7 beta-methyl-cholic acid is preserved in the enterohepatic circulation and has an effect on serum and liver cholesterol concentrations similar to those produced by the naturally occurring cholic acid. 7 beta-Methyl-cholic acid is an efficient inhibitor of the bacterial 7-dehydroxylation of the primary bile acids in the hamster.  相似文献   

13.
The isolated livers from normal, streptozotocin-diabetic, and insulin-treated diabetic rats were perfused without and with infused 7 alpha-hydroxycholesterol. Biliary bile acids were extracted and analysed by gas chromatography. In each liver group, total bile acid concentration was more than four times greater with infused 7 alpha-hydroxycholesterol than without the sterol. Without infused 7 alpha-hydroxycholesterol, bile acids in the control group were composed mainly of beta-muricholic acid and to a lesser extent of cholic acid. In the diabetic group, the ratio between these two bile acids reversed. The ratio tended to be normalized by treatment with insulin. With infused 7 alpha-hydroxycholesterol, the control group secreted chenodeoxycholic acid at a considerable higher percentage besides major beta-muricholic acid and minor cholic acid. In the diabetic group, the ratio between the latter two bile acids reversed as was the case with the endogenous secretion, while the percentage of chenodeoxycholic acid remained then unchanged. The diminished percentage of beta-muricholic acid in the diabetic group was increased two times by treatment with insulin.  相似文献   

14.
Hydroxylation of lithocholic, chenodeoxycholic, deoxycholic and cholic acids was studied in monolayers of rat hepatocytes cultured for 76 h. The majority of added lithocholic and chenodeoxycholic acids was metabolized to beta-muricholic acid (56-76%). A small part of these bile acids (9%), however, and a considerable amount of deoxycholic and cholic acids (21%) were converted into metabolites more polar than cholic acid in the first culture period. Formation of these compounds decreased during the last day of culture. Bile acids synthesized after addition of [4-14C]-cholesterol were almost entirely (97%) sulfated and/or conjugated, predominantly with taurine (54-66%), during culture. Sulfated bile acids were mainly composed of free bile acids. The ability of hepatocytes to sulfurylate bile acids declined with culture age. Thus, rat hepatocytes in primary monolayer culture are capable to sulfurylate bile acids and to hydroxylate trihydroxylated bile acids, suggesting formation of polyhydroxylated metabolites.  相似文献   

15.
Monolayer cultures of hepatocytes isolated from cholestyramine-fed rats and incubated in serum-free medium converted exogenous [4-14C]cholesterol into bile acids at a 3-fold greater rate than did cultures of hepatocytes prepared from untreated rats. Cholic acid and beta-muricholic acid identified and quantitated by gas-liquid chromatography and thin-layer chromatography were synthesized by cultured cells for at least 96 h following plating. The calculated synthesis rate of total bile acids by hepatocytes prepared from cholestyramine-fed animals was approximately 0.058 micrograms/mg protein/h. beta-Muricholic acid was synthesized at approximately a 3-fold greater rate than cholic acid in these cultures. Cultured hepatocytes rapidly converted the following intermediates of the bile acid pathway; 7 alpha-hydroxy[7 beta-3H]cholesterol, 7 alpha-hydroxy-4-[6 beta-3H] cholesten-3-one, and 5 beta-[7 beta-3H]cholestane-3 alpha, 7 alpha, 12 alpha-triol into bile acids. [24-14C]Chenodeoxycholic acid and [3H]ursodeoxycholic acid were rapidly biotransformed to beta-muricholic acid. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase activity measured in microsomes of cultured hepatocytes decreased during the initial 48 h following plating, but remained relatively constant for the next 72 h. In contrast, cholesterol 7 alpha-hydroxylase activity appeared to decrease during the first 48 h, followed by an increase over the next 48 h. Despite the apparent changes in enzyme activity in vitro, the rate of bile acid synthesis by whole cells during this time period remained constant. It is concluded that primary monolayer cultures of rat hepatocytes can serve as a useful model for studying the interrelationship between cholesterol and bile acid metabolism.  相似文献   

16.
1. Isolated rat liver was perfused with heparinized whole blood under physiological pressure resulting in the secretion of bile at about the rate observed in vivo. 2. The preparation remained metabolically active for 4h and was apparently normal in function and microscopic appearance. 3. When the perfusate plasma and liver cholesterol pool was labelled by the introduction of [2-(14)C]mevalonic acid the specific radioactivity of the perfusate cholesterol increased. The biliary acids (cholic acid and chenodeoxycholic acid) were labelled and had the same specific radioactivity. 4. Livers removed from rats immediately after, and 40h after, the start of total biliary drainage, were perfused; increased excretion rates of both cholic acid and chenodeoxycholic acid were found when the liver donors had been subjected to biliary drainage. 5. The incorporation of [2-(14)C]mevalonic acid or rat lipoprotein labelled with [(14)C]cholesterol into bile acids was studied. 6. A dissociation between the mass of bile acid excreted and the rate of incorporation of (14)C was found. This was attributed to the changing specific radioactivity of the cholesterol pool acting as the immediate bile acid precursor.  相似文献   

17.
Ursodeoxycholic acid was estimated in bile samples from humans and wild North American black bears using 7 beta-hydroxysteroid dehydrogenase purified from Clostridium absonum by Procion Red affinity chromatography. The percentage ursodeoxycholic acid was calculated by two methods: (a) 7 beta-hydroxyl groups were quantified using 7 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxyl groups (total bile acids) were quantified using 3 alpha-hydroxysteroid dehydrogenase. The percentage ursodeoxycholic acid was calculated on the basis of [7 beta-hydroxyl groups]/[3 alpha-hydroxyl groups] X 100. (b) Bile was hydrolyzed with sodium hydroxide and subjected to thin-layer chromatography. Bands corresponding to cholic acid, chenodeoxycholic acid plus deoxycholic acid, and ursodeoxycholic acid were identified by the use of standards and Komarowsky's spray reagent. Total bile acids and total ursodeoxycholic acid were measured by elution of silica gel in unsprayed areas corresponding to the bile acid standards and quantification of the total bile acid in each eluate. Direct comparison of these methods validated the use of 7 beta-hydroxysteroid dehydrogenase in the estimation of ursodeoxycholic acid in the biles of black bears and of patients fed ursodeoxycholic acid for cholesterol gallstone dissolution. Relative percentages of ursodeoxycholic acid were 8-24% in four bears and 22 and 27% in the patients ingesting 500 and 750 mg ursodeoxycholic acid per day for 3 months, respectively. Predictably lower values were obtained in two control subjects and one patient ingesting 750 mg chenodeoxycholic acid per day for 3 months.  相似文献   

18.
Bile acid synthesis in cell culture   总被引:2,自引:0,他引:2  
Confluent cultures of Hep G2 cells were found to synthesize chenodeoxycholic and cholic acids continually. Chenodeoxycholic acid was synthesized at the rate of 58 +/- 8.6 micrograms/96 h, a rate more than 7-fold greater than that for cholic acid. Addition of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol but not the -3 alpha, 7 alpha-diol was followed by an increase in cholic acid synthesis, thus indicating a relatively low 12 alpha-hydroxylase activity. Endogenous synthesis of monohydroxy bile acid ester sulfates was found, with maximum rates of 135 and 74 micrograms/96 h for lithocholic and 3 alpha-hydroxy-5-cholenoic acids, respectively. Incubation of Hep G2 cells in medium containing 25% D2O permitted a comparison of the precursor/product relationship of cholesterol with 3 beta-hydroxy-5-cholenoic acid. The pattern of incorporation of deuterium was in accordance with that expected, thus allowing the conclusion that this monohydroxy bile acid is derived from cholesterol and should be considered together with chenodeoxycholic and cholic acids as a primary bile acid.  相似文献   

19.
In order to investigate the metabolic fate of serum esterified 7 alpha-hydroxycholesterol, [4-14C]7 alpha-hydroxycholesterol-3 beta-stearate was synthesized from labeled cholesterol and administered to bile fistula hamsters intravenously. Bile samples were collected at every 20 min for 7 h. Radioactivity was detected in bile 40 min after the beginning of the infusion of the labeled compound and 56.5 +/- 5.7% (48.7-66.0%) of the administered radioactivity was recovered in bile during 7 h. The liver contained appreciable radioactivity (19.5 +/- 7.6% of the administered dose) at the time of sacrifice. Only a trace amount of radioactivity was detected in urine and blood. Cumulative recovery of the radioactivity was 76.3 +/- 8.6% (63.3-90.4%). Major radioactive metabolites in the bile samples were identified to be taurine- and glycine-conjugated cholic acid and chenodeoxycholic acid by radioactive thin-layer chromatographic analysis of the bile samples before and after enzymatic hydrolysis and 3 alpha-hydroxysteroid dehydrogenase treatment. The conversion was nearly complete and we could not detect neutral metabolites, such as the mother compound, free 7 alpha-hydroxycholesterol and bile alcohols, as well as glucuronidated or sulfated bile acids. It is concluded that serum esterified 7 alpha-hydroxycholesterol could be effectively taken up by the liver, hydrolyzed by cholesterol esterase and metabolized via the normal biosynthetic pathway to taurine- or glycine-conjugated primary bile acids to be excreted into bile.  相似文献   

20.
We explored the influence of the hydrophilic-hydrophobic balance of a series of natural bile acids on cholesterol absorption in the mouse. Male C57L/J mice were fed standard chow or chow supplemented with 0.5% cholic; chenodeoxycholic; deoxycholic; dehydrocholic; hyocholic; hyodeoxycholic; alpha-, beta-, or omega-muricholic; ursocholic; or ursodeoxycholic acids for 7 days. Biliary bile salts were measured by reverse-phase HPLC, and hydrophobicity indices were estimated by Heuman's method. Cholesterol absorption efficiency was determined by a plasma dual-isotope ratio method. In mice fed chow, natural proportions of tauro-beta-muricholate (42 +/- 6%) and taurocholate (50 +/- 7%) with a hydrophobicity index of -0.35 +/- 0.04 produced cholesterol absorption of 37 +/- 5%. Because bacterial and especially hepatic biotransformations of specific bile acids occurred, hydrophobicity indices of the resultant bile salt pools differed from fed bile acids. We observed a significant positive correlation between hydrophobicity indices of the bile salt pool and percent cholesterol absorption. The principal mechanism whereby hydrophilic bile acids inhibit cholesterol absorption appears to be diminution of intraluminal micellar cholesterol solubilization. Gene expression of intestinal sterol efflux transporters Abcg5 and Abcg8 was upregulated by feeding cholic acid but not by hydrophilic beta-muricholic acid nor by hydrophobic deoxycholic acid. We conclude that the hydrophobicity of the bile salt pool predicts the effects of individual fed bile acids on intestinal cholesterol absorption. Natural alpha- and beta-muricholic acids are the most powerful inhibitors of cholesterol absorption in mice and might act as potent cholesterol-lowering agents for prevention of cholesterol deposition diseases in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号