首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the relationship between protein and tryptophan intake and the adverse-effect-level of di(2-ethylhexyl)phthalate (DEHP). Growth retardation of young rats due to DEHP was strengthened by increasing protein level. The addition of tryptophan to the diet caused extreme increases in the nicotinamide formation, but no growth retardation was observed.  相似文献   

2.
In order to find an alleviation method for the adverse effect of environmental endocrine disrupters, we studied the effects of the putative endocrine disrupter and peroxisome proliferator, di(2-ethylhexyl)phthalate (DEHP), on animal growth and vitamin metabolism. It is known that the effects of chemical compounds such as xenobiotics differ according to the dietary protein source. We compared the effects of dietary DEHP administration on rats fed with a diet containing milk casein or wheat gluten. The increased conversion ratio of tryptophan to nicotinamide by DEHP administration was significantly higher in the casein group than in the gluten group. We also investigated the effects of DEHP on the urinary excretion of other vitamins. DEHP administration resulted in decreased urinary excretion of vitamin B(1), vitamin B(2), and pantothenic acid.  相似文献   

3.
We have previously reported that the administration of a large amount of di(n-butyl)phthalate (DBP) increased the conversion ratio of tryptophan to niacin in rats. In the present experiment, the effect of di(2-ethylhexyl)phthalate (DEHP) on the conversion ratio and how altering the conversion ratio of tryptophan to niacin depended on the concentration of DEHP were investigated to elucidate the toxic mechanism of phthalic acid esters (PhE). Rats were fed with a diet containing 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1.0%, or 3.0% DEHP for 21 days. To assess the conversion ratio of tryptophan to niacin, urine samples were collected at the last day of the experiment and measured for metabolites on the tryptophan-niacin pathway. The conversion ratio increased with increasing dietary concentration of DEHP above 0.05%; the conversion ratio was about 2% in the control group, whereas it was 28% in the 3.0% DEHP group. It is suggested that the inhibition of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD) by DEHP or its metabolites caused this increase in the conversion ratio. We conclude that PhE such as DEHP and DBP disturbed the tryptophan-niacin metabolism.  相似文献   

4.
We have reported that the conversion ratio of tryptophan to niacin increased with increasing dietary concentration of di(2-ethylhexyl)phthalate (DEHP); the conversion ratio was about 2.0% in the control rat, which increased by about 30% in the rat fed with 3.0% DEHP diet. In this study, we investigated whether this abnormal increase in the conversion ratio by DEHP occurred through the alteration of the enzyme activities involved in the metabolism of tryptophan to niacin. Rats were fed with a diet containing 0%, 0.1%, 0.5%, or 1.0% DEHP for 21 days. The nine kinds of enzyme activities involved in the biosynthesis and catabolism in the liver and kidney were measured. Based on previous findings that the formation of quinolinic acid and its' metabolites significantly increased with DEHP administration, we proposed that the activity of 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase would be inhibited by DEHP intake. However, we found that the activities in the liver and kidney did not decrease in the rat fed with DEHP-containing diet. We discuss the discrepancy between the metabolite results and the enzyme activities.  相似文献   

5.
We have reported the effect of di(2-ethylhexyl)phthalate (DEHP) on the tryptophan (Trp)-niacin pathway in rats. To clarify the universal effect of DEHP on rodents, we studied whether DEHP also has an effect on Trp metabolism in mice. Mice were fed a niacin-free, 20% casein diet supplemented with DEHP for 21 days. Feeding with DEHP decreased the body weight gain and increased the liver weight in correlation with the dose level of DEHP. The administration of DEHP significantly increased the formation of quinolinic acid and the lower metabolites of the Trp-niacin pathway. The flux of niacin in the lower part of the Trp-niacin pathway in mice was enhanced by feeding with DEHP.  相似文献   

6.
The toxicity and effects on protein synthesis of the phthalate esters diethyl phthalate (DEP) and di(2-ethylhexyl) phthalate (DEHP) was studied in radish seedlings (Raphanus sativus cv. Kööpenhaminan tori). Phthalate esters are a class of commercially important compounds used mainly as plasticizers in high molecular-weight polymers such as many plastics. They can enter soil through various routes and can affect plant growth and development. First the effect of DEP and DEHP on the growth of radish seedlings was determined in an aqueous medium. It was found that DEP, but not DEHP, caused retardation of growth in radish. A further investigation on protein synthesis during DEP-stress was executed by in vivo protein labeling combined with two-dimensional gel electrophoresis (2D-PAGE). For comparisons with known stress-induced proteins a similar experiment was done with heat shock, and the induced heat shock proteins (HSPs) were compared with those of DEP-stress. The results showed that certain HSPs can be used as an indicator of DEP-stress, although the synthesis of most HSPs was not affected by DEP. DEP also elicited the synthesis of numerous proteins found only in DEP-treated roots. The toxic effect of phthalate esters and the roles of the induced proteins are discussed.  相似文献   

7.
Oral administration of DEHP, 1000 mg/kg body weight, to rats daily from 6 to 15 day of gestation resulted in retardation of fetal growth and increase in fetal liver weight which contained significant quantities of DEHP. The activities of mitochondrial succinate dehydrogenase, malate dehydrogenase, cytochrome c oxidase and adenosine triphosphatase were decreased in fetal liver. The data indicate that exposure of mothers to DEHP during pregnancy could adversely affect the fetal livers by interfering with bioenergetics of the cell.  相似文献   

8.
The effects of di(2‐ethylhexyl) phthalate (DEHP) on proteins secreted by HepG2 cells were studied using a proteomic approach. HepG2 cells were exposed to various concentrations of DEHP (0, 2.5, 5, 10, 25, 50, 100, and 250 μM) for 24 or 48 h. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) and comet assays were then conducted to determine the cytotoxicity and genotoxicity of DEHP, respectively. The MTT assay showed that 10 μM DEHP was the maximum concentration that did not cause cell death. In addition, the DNA damage in HepG2 cells exposed to DEHP was found to increase in a dose‐ and time‐dependent fashion. Proteomic analysis using two different pI ranges (4–7 and 6–9) and large size 2‐DE revealed the presence of 2776 protein spots. A total of 35 (19 up‐ and 16 down‐regulated) proteins were identified as biomarkers of DEHP by ESI‐MS/MS. Several differentiated protein groups were also found. Proteins involved in apoptosis, transportation, signaling, energy metabolism, and cell structure and motility were found to be up‐ or down‐regulated. Among these, the identities of cystatin C, Rho GDP inhibitor, retinol binding protein 4, gelsolin, DEK protein, Raf kinase inhibitory protein, triose phosphate isomerase, cofilin‐1, and haptoglobin‐related protein were confirmed by Western blot assay. Therefore, these proteins could be used as potential biomarkers of DEHP and human disease associated with DEHP.  相似文献   

9.
Helix stabilizing nucleoid protein HSNP-C' from the thermophilic archaeon Sulfolobus acidocaldarius has been characterized with respect to its interactions with nucleic acids by gel retardation assay, affinities to immobilized matrices, electron microscopy, and fluorescence titration. The amino acids implicated in the DNA binding site of the protein have been shown by selectively modifying specific amino acyl functional groups and looking at their effects on the DNA binding properties of the protein. Lysine, arginine, tryptophan, and tyrosine residues of the protein HSNP-C' were modified with pyridoxal-5-phosphate; 2,3-butanedione; BNPS-skatole; and tetranitromethane, respectively. The modification of residues was assessed according to standard procedures. The effect of the chemical modification on the function of the protein HSNP-C' with respect to DNA protein interactions was studied and the results indicate the definite involvement of tyrosines and also the significant involvement of the flanking tryptophan residues in the DNA binding domain on the protein.  相似文献   

10.
Nicotinamide N-methyltransferase (NNMT), a key cytoplasmic protein in the human body, is accountable to catalyze the nicotinamide (NCA) N1-methylation through S-adenosyl-L-methionine (SAM) as a methyl donor, which has been linked to many diseases. Although extensive studies have concerned about the biological aspect, the detailed mechanism study of the enzyme function, especially in the part of protein dynamics is lacking. Here, wild-type nicotinamide N-methyltransferase together with the mutation at position 20 with Y20F, Y20G, and free tryptophan were carried out to explore the connection between protein dynamics and catalysis using time-resolved fluorescence lifetimes. The results show that wild-type nicotinamide N-methyltransferase prefers to adapt a less flexible protein conformation to achieve enzyme catalysis.  相似文献   

11.
The environmental contaminant di(2-ethylhexyl)phthalate (DEHP) has been shown to inhibit the phosphorylation of histone by purified protein kinase C (PK-C) from rat brain in a concentration-dependent manner. The inhibition does not involve making the substrate unavailable, although DEHP does bind to some extent to histone. DEHP displaces phorbol dibutyrate from PK-C, indicating that DEHP binds to the regulatory domain of the enzyme. Since DEHP does not affect the PK-C dependent phosphorylation of protamine, DEHP probably does not bind at the catalytic site. DEHP non-competitively blocked activation of PK-C by either phosphatidyl serine or calcium ion. Inhibition of histone phosphorylation by DEHP was enhanced if diglyceride was present, and the enhancement was stereoselective for the isomeric form of the diglyceride. The mechanism of the inhibition is thought to involve interference with the interaction between calcium ion and the regulatory domain of PK-C, and would have significance only for those PK-C substrates that require calcium activation of the enzyme. Thus the presence of DEHP in the high nanomolar concentration range alters the effective substrate specificity of PK-C.  相似文献   

12.
S Yokota 《Histochemistry》1986,85(2):145-155
Differential induction of serine: pyruvate amino-transferase (SPT) in rat liver parenchymal cells by administration of glucagon or di-(2-ethylhexyl)phthalate (DEHP) was studied using post-embedding immunocytochemical techniques and morphometric methods. Two groups of rats were fasted for 5 days and daily received peritoneal injection of glucagon (300 micrograms/100 g) or physiological saline. Another two groups of rats were fed on laboratory chow with or without 2% DEHP for 2 weeks. Livers were perfusion-fixed, cut into tissue sections (50-100 micron), and processed to cytochemistry for catalase, immunocytochemistry for SPT, and conventional procedures for electron microscopy. The morphometric analysis showed that glucagon injection has negligible effect on the volume and numerical density and mean diameter of peroxisomes, whereas volume density of mitochondria was decreased by 25%. By DEHP administration peroxisomes were about 3-fold increased in the volume and numerical density. Mitochondria was increased about 40% in the numerical density, but unchanged in the volume density. Light and electron microscopic immunocytochemistry demonstrated that glucagon injection exclusively enhanced mitochondrial SPT, whereas DEHP administration exclusively induced in peroxisomal SPT. Quantitative analysis showed that by the glucagon injection, the labeling density of mitochondria was increased about 4-fold, but that of peroxisomes was 1.6 times as much as control, while by DEHP administration, the labeling density of peroxisomes was enhanced about 3-fold but that of mitochondria was decreased by 13%. The results clearly indicate that glucagon induces mitochondrial SPT, whereas peroxisome proliferator, DEHP induces peroxisomal SPT.  相似文献   

13.
The aims of present study were to investigate the effect of phthalate (2-ethylhexyl) ester (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) on Th1/Th2 balance signaling for interleukin 4 (IL-4) expression in splenic lymphocytes, and contribution of MEHP to any hypothesized changes in vitro. Primary splenic lymphocytes were exposed to DEHP/MEHP. ELISA and Western blotting were used to detect proteins. Confocal-microscopy was used to examine nuclear translocation. Nuclear factor of activated T cells (NFAT) DNA binding activity was examined by electrophoretic mobility-shift assay. DEHP significantly increased IL-4 and interferon gamma (IFN-γ) level, and reduced Th1/Th2 ratio (reflected by IFN-γ/IL-4) with 5 μg/L Concanavalin A (ConA) treatment. While MEHP reduced Th1/Th2 ratio (represented by IFN-γ/IL-6). IL-4 mRNA was significantly increased by DEHP but not by MEHP after PMA and Ion treatment. DEHP significantly inhibited NFATp protein in cytosol and nucleus. DEHP augmented nuclear translocation of NFATc in transfected EL4 cells and NFAT DNA-binding activity. DEHP-mediated enhancement of calcium-dependent phosphatase calcineurin (CaN) protein, and NFAT and IL-4 expression were abrogated by calcium antagonist verapamil and CaN inhibitor tarcolimus. Ca2+/calmodulin antagonist chlorpromazine significantly suppressed IL-4 and CaN production with no NFAT mRNA change. Our study suggests that DEHP and MEHP impact Th1/Th2 balance by modulating different cytokines. DEHP-affected IL-4 expression through Ca/CaN/NFAT signaling pathway, but no effect was discovered for MEHP.  相似文献   

14.
Synthesis and release of NAD(P)ase by Neurospora crassa wild type was studied in experiments in which mycelia grown in Vogel minimal medium were transferred to media containing protein as the only carbon source. Several results are presented suggesting that the NAD(P)ase may be induced by the presence of protein in the culture medium. Low concentrations of sucrose or glucose (0.1%), Casamino acids or some amino acids such as methionine, cysteine, phenylalanine and tryptophan strongly repressed the enzyme synthesis. Under induction conditions NAD(P)ase and alkaline protease appeared together in the culture medium. It would appear that NAD(P)ase and alkaline protease are coordinately regulated by a common control mechanism related to carbon catabolism.  相似文献   

15.
The human Rad51 protein, a eukaryotic ortholog of the bacterial RecA protein, is a key enzyme that functions in homologous recombination and recombinational repair of double strand breaks. The Rad51 protein contains two flexible loops, L1 and L2, which are proposed to be sites for DNA binding, based on a structural comparison with RecA. In the present study, we performed mutational and fluorescent spectroscopic analyses on the L1 and L2 loops to examine their role in DNA binding. Gel retardation and DNA-dependent ATP hydrolysis measurements revealed that the substitution of the tyrosine residue at position 232 (Tyr232) within the L1 loop with alanine, a short side chain amino acid, significantly decreased the DNA-binding ability of human Rad51, without affecting the protein folding or the salt-induced, DNA-independent ATP hydrolysis. Even the conservative replacement with tryptophan affected the DNA binding, indicating that Tyr232 is involved in DNA binding. The importance of the L1 loop was confirmed by the fluorescence change of a tryptophan residue, replacing the Asp231, Ser233, or Gly236 residue, upon DNA binding. The alanine replacement of phenylalanine at position 279 (Phe279) within the L2 loop did not affect the DNA-binding ability of human Rad51, unlike the Phe203 mutation of the RecA L2 loop. The Phe279 side chain may not be directly involved in the interaction with DNA. However, the fluorescence intensity of the tryptophan replacing the Rad51-Phe279 residue was strongly reduced upon DNA binding, indicating that the L2 loop is also close to the DNA-binding site.  相似文献   

16.
We compared the acute effects of intragastric administration of protein and carbohydrate on tryptophan and 5-hydroxytryptamine (5HT) in rat brain, pineal, intestine, and pancreas. Protein decreased and carbohydrate increased brain indoles relative to water-infused controls. These effects were due to competition between the large neutral amino acids for entry into the brain. This competition does not exist in the pineal. The macronutrients had no effect on pineal tryptophan metabolism. In the intestine, protein resulted in higher tryptophan levels as compared to controls, owing to absorption of tryptophan in the protein. However intestinal 5HT levels were influenced by factors other than precursor availability. Pancreatic indoles were affected in a similar manner to the brain indoles. Competition between the large neutral amino acids for entry into the pancreas was also indicated by the finding that valine administration lowered brain and pancreatic tryptophan, but not the levels in the intestine and pineal. It remains to be seen whether the decrease in pancreatic 5HT after a protein meal and the increase after carbohydrate modulate the release of insulin and glucagon.  相似文献   

17.
18.
19.
The effect of di(2-ethylhexyl) phthalate (DEHP) on the response of isolated rat liver mitochondria to Ca2+ was investigated. DEHP was found to inhibit more than 60% of the auto-accelerating release of respiration induced by 100 microM Ca2+, being maximally inhibitory at 40 microM. Prior addition of DEHP also partially inhibited Ca2+-induced swelling of the mitochondrial matrix. However, DEHP did not change the net rate of Ca2+ uptake measured by the steady-state infusion method. DEHP also reduced the rate of adenine nucleotide exchange across the mitochondrial membrane. Another alkyl phthalate and alkyl citrates had similar effects on Ca2+-induced membrane damage, but their potencies depended on the lengths of their alkyl chains. These results suggest that the effects of DEHP and other alkyl esters on mitochondrial functions are mainly based on their actions on membrane lipids surrounding adenine nucleotide translocator (AdNT), resulting in alteration of the interaction between these phospholipids and AdNT, and consequent modification of the state of the protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号