首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of tomato leaf curl viral gene expression in host tissues   总被引:3,自引:0,他引:3  
The regulation of expression of the two virion-sense (V1 and V2) and four complementary-sense (C1, C2, C3, and C4) open reading frames (ORFs) of Tomato leaf curl virus (TLCV) was studied in both stably and transiently transformed Nicotiana tabacum tissues with fusions with the beta-glucuronidase (GUS) reporter gene. GUS-expressing transgenic lines were obtained with each of the four complementary-sense gene-GUS fusion constructs and with truncated versions of the virion-sense gene-GUS fusion constructs (V1GUSdeltaC and V2GUSdeltaC) lacking complementary-sense sequences encoding the C1, C2, and C3 ORFs. However, little or no GUS expression was observed in kanamycin-resistant plants transformed with full-length, virion-sense gene constructs (V1GUS and V2GUS) constituting the complete viral genome. In contrast, V1GUS and V2GUS were found to direct high-level GUS expression in transient assays with tobacco protoplasts, suggesting that integration of viral constructs containing functional, complementary-sense genes may lead to repression or deletion of the introduced constructs in transgenic tissues. V2GUS expression in the transient protoplast assay was found to be severely curtailed by specific mutation of the C2 ORF, supporting a role for the C2 protein in transactivation of TLCV virion-sense gene expression. TLCV ORF-GUS constructs displayed distinctive tissue expression patterns in transgenic tobacco plants that could be divided into constitutive (C1, C4, and V2GUSdeltaC), predominantly vascular (C2, C3), or reduced expression in cells associated with the vascular bundles (V1GUSdeltaC). The significance of these results is discussed in terms of current models of gene function and regulation in geminiviruses.  相似文献   

2.
4-coumarate::CoA ligase (4CL) gene family members are involved in channeling carbon flow into branch pathways of phenylpropanoid metabolism. Transgenic Arabidopsis plants containing the At4CL1 or At4CL2 promoter fused to the beta-glucuronidase (GUS) reporter gene show developmentally regulated GUS expression in the xylem tissues of the root and shoot. To identify regulatory genes involved in the developmental regulation of At4CL and other phenylpropanoid-specific genes, we generated ethyl methyl sulfate mutagenized populations of At4CL1::GUS and At4CL2::GUS transgenic lines and screened approximately 16,000 progeny for reduced or altered GUS expression. Several lines with reproducible patterns of reduced GUS expression were identified. However, the GUS-expression phenotype segregated in a non-Mendelian manner in all of the identified lines. Also, GUS expression was restored by 5-azacytidine (aza) treatment, suggesting inhibitory DNA methylation of the transgene. Southern analysis confirmed DNA methylation of the proximal promoter sequences of the transgene only in the mutant lines. In addition, retransformation of At4CL::GUS lines with further At4CL promoter constructs enhanced the GUS-silencing phenotype. Taken together, these results suggest that the isolated mutants are epimutants. Apparently, two different modes of silencing were engaged in the At4CL1::GUS and At4CL2::GUS silenced lines. While silencing in the seedlings of the At4CL1::GUS lines was root specific in seedlings, it affected all organs in the At4CL2::GUS lines. Also, At4CL1::GUS transgene silencing was confined to the transgene but At4CL2::GUS silencing extended to the endogenous At4CL2 gene. Organ-specific silencing of the At4CL1::GUS transgene cannot be explained by current models in the literature.  相似文献   

3.
4.
5.
6.
Hevea brasiliensis transgenic plants are regenerated from transgenic callus lines by somatic embryogenesis. Somatic embryogenesis is not yet available for commercial propagation of Hevea clones, which requires conventional grafting of buds on rootstock seedlings (budding). The stability of transgene expression in budded plants is therefore necessary for further development of genetic engineering in rubber trees. Transgene expression was assessed by fluorimetric beta-glucuronidase (GUS) activity in fully developed leaves of in vitro plants from transgenic lines and their sub-lines obtained by budding. A large variation in GUS activity was found in self-rooted in vitro plants of five transgenic lines, and the absence of activity in one line suggested transgene silencing. Beyond confirming transmissibility of the reporter gene by budding and long-term expression, a quantification of GUS activity revealed that greater variability existed in budded plants compared to self-rooted mother in vitro plants for three transgenic lines. Although somatic embryogenesis provided more stable GUS activity, budding remained an efficient way of propagating transgenic plants but transgene expression in budded plants should be verified for functional analysis and further development.  相似文献   

7.
8.
9.
10.
张勇  杨宝玉  陈士云 《遗传学报》2006,33(12):1105-1111
分析了来源于农杆菌介导的4个独立的大豆转化系的后代遗传特性。分别采用种子切片GUS染色方法和除草剂涂抹以及喷洒方法检测gus报告基因和抗除草剂bar基因在后代的表达。其中3个转化系T1代gus基因和bar基因能够以孟德尔方式3:1连锁遗传,说明这2个基因整合在大豆基因组的同一位点。这3个转化系在T2代获得了纯合的转化系,并能够稳定遗传至T5代。有一个转化系在T1代GUS和抗除草剂检测都为阴性,但通过Southern杂交证明转基因存在于后代基因组,显示发生了转基因沉默。为了证明转基因沉默是转录水平还是转录后水平,T1代植物叶片接种大豆花叶病毒(SMV)并不能抑制转基因沉默,说明该转化系基因沉默可能不是发生在转录后水平。  相似文献   

11.
12.
13.
14.
T-DNA integration and stability were assessed in Agrobacterium-derived transgenic lettuce lines carrying a chimaeric CaMV 35S promoter-driven gus-intron gene and a chimaeric nos.nptII.nos gene. T-DNA integration was predominantly complex in transgenic plants derived from an A. tumefaciens strain carrying the supervirulent plasmid ToK47. Truncation of the right side of the T-DNA was observed in first seed generation R1 plants from one line. Complex T-DNA integration patterns did not always correlate with low transgene expression. Despite a high T-DNA copy number, ca. 30% of the lines analysed showed high transgene expression in the R1 generation. High transgene expression was stable at least to the R4 seed generation in selected high-expressing lines. Transgene expression was lost in the R2 generation in a low expressing line, while complete, heritable transgene silencing from the R0 to R2 generations was also observed in another line. A 50-fold variation in -glucuronidase (GUS) activity and a 16-fold variation in NPTII protein content were observed between R1 plants derived from different R0 parents. Reactivation of transgene expression with 5-azacytidine in partially silenced lines indicated that low expression was associated with DNA methylation.  相似文献   

15.
16.
We used bisulfite sequencing to study the methylation of a viral transgene whose expression was silenced upon plum pox virus infection of the transgenic plant and its subsequent recovery as a consequence of so‐called virus‐induced gene silencing (VIGS). VIGS was associated with a general increase in the accumulation of small RNAs corresponding to the coding region of the viral transgene. After VIGS, the transgene promoter was not methylated and the coding region showed uneven methylation, with the 5′ end being mostly unmethylated in the recovered tissue or mainly methylated at CG sites in regenerated silenced plants. The methylation increased towards the 3′ end, which showed dense methylation in all three contexts (CG, CHG and CHH). This methylation pattern and the corresponding silenced status were maintained after plant regeneration from recovered silenced tissue and did not spread into the promoter region, but were not inherited in the sexual offspring. Instead, a new pattern of methylation was observed in the progeny plants consisting of disappearance of the CHH methylation, similar CHG methylation at the 3′ end, and an overall increase in CG methylation in the 5′ end. The latter epigenetic state was inherited over several generations and did not correlate with transgene silencing and hence virus resistance. These results suggest that the widespread CG methylation pattern found in body gene bodies located in euchromatic regions of plant genomes may reflect an older silencing event, and most likely these genes are no longer silenced.  相似文献   

17.
18.
19.
Instability of transgene expression in plants is often associated with complex multicopy patterns of transgene integration at the same locus, as well as position effects due to random integration. Based on maize transposable elements Activator (Ac) and Dissociation (Ds), we developed a method to generate large numbers of transgenic barley (Hordeum vulgare var Golden Promise) plants, each carrying a single transgene copy at different locations. Plants expressing Ac transposase (AcTPase) were crossed with plants containing one or more copies of bar, a selectable herbicide (Basta) resistance gene, located between inverted-repeat Ds ends (Ds-bar). F(1) plants were self-pollinated and the F(2) generation was analyzed to identify plants segregating for transposed Ds-bar elements. Of Ds-bar transpositions, 25% were in unlinked sites that segregated from vector sequences, other Ds-bar copies, and the AcTPase gene, resulting in numerous single-copy Ds-bar plants carrying the transgene at different locations. Transgene expression in F(2) plants with transposed Ds-bar was 100% stable, whereas only 23% of F(2) plants carrying Ds-bar at the original site expressed the transgene product stably. In F(3) and F(4) populations, transgene expression in 81.5% of plants from progeny of F(2) plants with single-copy, transposed Ds-bar remained completely stable. Analysis of the integration site in single-copy plants showed that transposed Ds-bar inserted into single- or low-copy regions of the genome, whereas silenced Ds-bar elements at their original location were inserted into redundant or highly repetitive genomic regions. Methylation of the non-transposed transgene and its promoter, as well as a higher condensation of the chromatin around the original integration site, was associated with plants exhibiting transgene silencing.  相似文献   

20.
Transgenic technology has greatly facilitated our understanding of gene function, producing pharmaceutical proteins, and generating models for the study of human diseases. However, epigenetic silencing is still the most major limitation. In this study, we employed DNA methyltransferase inhibitor 5-Aza-2'-deoxycytidine (5-Aza-dC) and histone deacetylase inhibitor Trichostatin A (TSA) to study the reactivation of silenced green fluorescent protein (GFP) transgene driven by the cytomegalovirus (CMV) promoter in three fibroblast cell lines from transgenic pigs (tPFs). Analysis showed that porcine fetal fibroblasts (PFF) treated with 0.5 μM 5-Aza-dC for 48 h or 0.25 μM TSA for 24 h had no significantly relevant deaths and no considerably morphological changes. We observed that transgene underwent progressive silencing in a long time course of culture in vitro, and this was correlated with DNA hypermethylation and hypoacetylation of specific histone H3 lysines in the CMV promoter region. Moreover, silenced transgene could be reactivated with 5-Aza-dC or/and TSA treatment by reversing the CMV promoter status of histone hypoacetylation and DNA hypermethylation, and the combination treatment with both agents resulted in a synergistic activation of the transgene, suggesting a cross talk between histone acetylation and DNA methylation. Furthermore, the combination treatment once per 10 days could maintain transgene expression in a high level for more than 60 days by sustaining DNA hypomethylation and histone hyperacetylation. In conclusion, our results suggest that methyltransferase inhibitor 5-Aza-dC and histone deacetylase inhibitor TSA can reactivate silenced transgene and maintain transgene expression by induction of DNA hypomethylation and histone hyperacetylation in the promoter region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号