首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
寄主抗药性对菜蛾绒茧蜂抗药性发展的影响   总被引:5,自引:4,他引:1  
室内筛选小菜蛾中抗品系(SRP)、高抗品系(RP)、以敏感小菜蛾幼虫(SP)为寄主的菜蛾绒茧蜂SRC品系和以SRP幼虫为寄主的菜蛾绒茧蜂RSC品系对氰戊菊酯的抗性。分别筛选了13、14、14和13代。小菜蛾SRP和RP品系分别获得了68.9和605.8倍的抗性,菜蛾绒茧蜂SRC和RSC品系分别获得了4.3和11.0倍的抗性。上述结果表明通过施药于体内有寄生蜂的小菜蛾幼虫筛选寄生蜂抗性,可以获得具有抗性的寄生蜂。以SRP为寄主的RSC品系的抗性水平高于以SP为寄主的SRC品系的抗性水平,表明和抗性较高的寄主同步筛选,寄生蜂的抗性发展更快。小菜蛾SP、SRP和RP三个品系幼虫的多功能氧化酶(MFO)活性比为1∶1.15∶1.50;菜蛾绒茧蜂SC、SRC和RSC三个品系幼虫的MFO活性比为1∶1.10∶1.49,成蜂的MFO活性比为1∶1.18∶1.54;而每种昆虫不同品系的羧酸酯酶(CarE)、总酯酶(Es)活性水平与其抗性水平变化不一致,表明抗性与MFO活性升高有关,而与CarE和Es的活性无关。  相似文献   

2.
分别在小菜蛾体内的菜蛾绒茧蜂处于卵期、早期幼虫和中期幼虫时,饲喂小菜蛾2龄幼虫亚致死剂量(=LC10)的阿维菌素和氟虫睛,研究上述杀虫剂处理对寄主体内菜蛾绒茧蜂结茧率和羽化率的影响。结果表明: 在菜蛾绒茧蜂处于卵期、早期幼虫和中期幼虫时,饲喂小菜蛾LC10剂量阿维菌素处理的菜叶后,菜蛾绒茧蜂的结茧率分别下降26.6%,22.8%和5.8%,饲喂小菜蛾LC10剂量氟虫睛处理的菜叶后,菜蛾绒茧蜂的结茧率分别下降76.9%,42.5%和18.5%。上述阿维菌素处理对菜蛾绒茧蜂成虫羽化率影响不显著,但上述氟虫睛处理可显著抑制菜蛾绒茧蜂成虫羽化率,在菜蛾绒茧蜂处于卵期、早期幼虫和中期幼虫时,饲喂小菜蛾LC10 剂量氟虫睛处理的菜叶可导致菜蛾绒茧蜂成虫羽化率分别下降53.1%,36.1%和47.8%。结果显示,即便是对寄主小菜蛾幼虫很低的剂量(LC10剂量)也会显著危害小菜蛾幼虫体内的菜蛾绒茧蜂的生长发育。此外,饲喂小菜蛾幼虫亚致死剂量杀虫剂对菜蛾绒茧蜂生长发育的影响与杀虫剂种类及蛾绒茧蜂发育阶段有关。  相似文献   

3.
小菜蛾及菜蛾绒茧蜂乙酰胆碱酯酶敏感性的相关变化   总被引:10,自引:3,他引:7  
用生物测定和生化检测的方法,对福州地区小菜蛾Plutella xylostella和菜蛾绒茧蜂Apanteles plutellae的抗药性及两种昆虫乙酰胆碱酯酶对杀虫剂的敏感性进行了田间监测。结果显示,从1998年9月至1999年4月,小菜蛾乙酰胆碱酯酶对6种有机磷和氨基甲酸酯杀虫剂敏感性逐渐恢复,寄生于同一虫源的菜蛾绒茧蜂乙酰胆碱酯酶敏感性的变化也呈明显的相关性,但菜蛾绒茧蜂乙酰胆碱酯酶的敏感性高于其寄主小菜蛾。脱离选择压力后,两种昆虫对杀虫剂的敏感性迅速恢复,乙酰胆碱酯酶的Ki值显著增高。对乙酰胆碱酯酶的KmVmaxKi值测定结果表明,两种昆虫对有机磷和氨基甲酸酯杀虫剂的抗性与乙酰胆碱酯酶对杀虫剂的不敏感性有关。此外还研究了不同发育期小菜蛾乙酰胆碱酯酶活性及其Ki值的变化。探讨了在杀虫剂选择压力下,两种昆虫乙酰胆碱酯酶敏感性的环境适应性变化机制。  相似文献   

4.
在28℃下,以小菜蛾3龄幼虫作寄主,研究了菜蛾绒茧蜂与菜蛾啮小蜂间的相互关系.当寄主供2种蜂同时产卵寄生时,与只供1种蜂时相比。绒茧蜂的寄生率无显著变化,而啮小蜂的寄生率则显著下降;2种蜂的合计寄生率与任一种蜂单独存在时相比无显著差异.当寄主先供绒茧蜂寄生,再供啮小蜂寄生时,绒茧蜂的成功寄生率不受影响,而啮小蜂的寄生率仅为8%~13%;啮小蜂能寄生在寄主体内的绒茧蜂高龄幼虫.绒茧蜂能寄生已被啮小蜂寄生的寄主幼虫,其子代部分个体能正常发育至成虫羽化.当已被绒茧蜂寄生和未被寄生的寄主同时存在时,啮小蜂主要寄生未被寄生的寄主.表明绒茧蜂具有竞争优势。但这种优势可因啮小蜂的寄生而被削弱.  相似文献   

5.
菜蛾盘绒茧蜂卵携带的免疫抑制因子   总被引:1,自引:0,他引:1  
抑制寄主昆虫的免疫反应是内寄生蜂存活的关键。菜蛾盘绒茧蜂Cotesia vestalis(Haliday)寄生小菜蛾Plutella xylostella (L.)幼虫后,蜂卵如何逃避和抑制寄主的免疫攻击,尚未得到全面揭示。本文采用电镜技术系统观察了菜蛾盘绒茧蜂卵表面的超微结构。结果显示:蜂卵表面覆盖有纤维层和絮状的类病毒样纤丝(VLFs),同时携带了含多分DNA病毒粒子(PDV)的萼液。在寄生初期,包裹在蜂卵表面的纤维层和VLFs首先起到保护蜂卵不被小菜蛾血细胞包囊的被动防御作用。随后,PDV发挥主动的免疫抑制作用。通过假寄生手段,证明了菜蛾盘绒茧蜂PDV (CvBV) 具有较持久的克服寄主免疫攻击的能力,是主要的免疫抑制因子。在假寄生后连续8 d的观察时间内,菜蛾盘绒茧蜂的蜂卵均未被包囊。结果提示,在菜蛾盘绒茧蜂-小菜蛾寄生体系中,菜蛾盘绒茧蜂采取被动防御和主动攻击两种方式应对寄主小菜蛾的免疫攻击。  相似文献   

6.
三种内寄生蜂寄生对小菜蛾幼虫精子发生的影响   总被引:3,自引:0,他引:3  
内寄生蜂寄生可能会引起寄主的寄生性去势。对小菜蛾Plutella xylostella与菜蛾啮小蜂Oomyzus sokolowskii Kurdumov (膜翅目: 姬小蜂科)、半闭弯尾姬蜂Diadegma semiclausum Hellén (膜翅目: 姬蜂科)、菜蛾盘绒茧蜂Cotesia plutellae (Kurdj.) (膜翅目: 茧蜂科) 3个寄生体系,利用形态学方法和蛋白质技术,研究了寄生对小菜蛾幼虫精子发生的影响。结果表明:菜蛾啮小蜂寄生对寄主的精子发生过程没有影响。半闭弯尾姬蜂寄生造成寄主精母细胞的细胞核畸形,精细胞的染色质超浓缩并趋向核膜,但能形成少量的精子;半闭弯尾姬蜂寄生会导致寄主精巢总蛋白的含量显著下降。菜蛾盘绒茧蜂寄生对小菜蛾幼虫精子发生的抑制程度最强,被寄生寄主的精母细胞出现肿胀,核膜皱缩,胞质中的线粒体发生病变;精细胞的染色体也出现超浓缩并趋向核膜,大量的精子溶解,无正常的精子形成;其精巢总蛋白含量的下降程度比姬蜂寄生的更为明显,且导致分子量为63.4 kD的主蛋白缺失。  相似文献   

7.
闭弯尾姬蜂与菜蛾盘绒茧蜂寄生菜蛾幼虫时的种间竞争   总被引:5,自引:1,他引:4  
在室内25℃下,以菜蛾3龄初幼虫作寄主,研究了菜蛾盘绒茧蜂Cotesia plutellae和半闭弯尾姬蜂Diadegma semiclausum的种间竞争。当寄主供2种蜂同时产卵寄生时,2种蜂各自的寄生率与其单独寄生时无显著差异,合计寄生率比一种蜂单独存在时有所提高,但差异不显著。2种蜂均能产卵寄生已被另一种蜂寄生了的寄主幼虫。当寄主被2种蜂寄生的间隔时间很短(少于10 h)时,所育出的蜂绝大部分(80%以上)为绒茧蜂;当寄主先被绒茧蜂寄生,并饲养2天以上再供弯尾姬蜂寄生时,所育出的全为绒茧蜂;当寄主先被弯尾姬蜂寄生,并饲养2天以上再供绒茧蜂寄生时,寄主幼虫绝大部分不能存活,只有少部分能育出寄生蜂,且多为弯尾姬蜂。当2种蜂的幼虫存在于同一寄主体内时,2种蜂的发育均受到另一种蜂的抑制;绒茧蜂1龄幼虫具有物理攻击能力,能将弯尾姬蜂卵或幼虫致死。这些结果表明,菜蛾盘绒茧蜂与半闭弯尾姬蜂在同一寄主中发育时,前者具有明显的竞争优势。  相似文献   

8.
何瑶  白素芬  李欣  蔡东章 《昆虫学报》2009,52(11):1183-1190
我们曾发现菜蛾盘绒茧蜂Cotesia vestalis和半闭弯尾姬蜂Diadegma semiclausum寄生严重阻碍小菜蛾Plutella xylostella幼虫的精子发生。本研究着重比较2种蜂寄生对小菜蛾精巢生长和精子束形成的影响, 以探明寄生因子对昆虫生殖调控的作用途径。 采取过寄生和假寄生方法, 对2种蜂各自寄生后的小菜蛾精巢生长体积, 精子发生和形成过程中生精细胞、精子束的显微形态变化进行了比较。 结果表明: 茧蜂和姬蜂寄生均明显降低小菜蛾精子束的数量, 严重阻碍了寄主幼虫的精子发生和精子形成. 姬蜂寄生造成小菜蛾精巢畸形, 而茧蜂则造成小菜蛾精子束畸形, 且茧蜂对小菜蛾精巢生长的抑制程度明显强于姬蜂。过寄生造成寄主寄生性去势程度加剧, 茧蜂和姬蜂过寄生后的小菜蛾精巢体积分别为0.005 mm3和0.008 mm3, 仅为各自只寄生1次后精巢体积的33.1%和36.3%。假寄生后, 发现只有寄生蜂母代物质存在的前提下, 对小菜蛾精巢生长的抑制程度基本模拟了正常寄生时的状态, 说明多分DNA病毒(polydnavirus, PDV)和毒液发挥了主要作用。 由此推断分属姬蜂属PDV和茧蜂属PDV的2类PDV功能基因对小菜蛾精巢生长发育的调控机制可能存在较大差异。  相似文献   

9.
过寄生、寄生时寄主龄期和寄生后寄主饥饿处理影响菜蛾盘绒茧蜂Cotesia plutellae(Kurdj.)幼蜂及畸形细胞的发育。显微解剖和观察表明,4龄小菜蛾Plutella xylostella L.幼虫被寄生后,其体内菜蛾盘绒茧蜂幼蜂发育不整齐、假寄生比例增高。过寄生后,每头被寄生的寄主血腔中畸形细胞数量明显增多,但直径变小;随着过寄生程度的加剧,幼蜂发育严重受阻。寄主营养显著影响体内幼蜂及畸形细胞的发育,被寄生的小菜蛾经饥饿处理62 h后,体内畸形细胞的数量、活性明显降低,与此同时,幼蜂的发育也受到明显抑制,寄主发育与寄生蜂和畸形细胞的发育呈正相关性。由此可见,寄主不同龄期、过寄生及寄主营养状况均对寄主体内幼蜂和畸形细胞发育产生影响。  相似文献   

10.
吴刚  江树人 《昆虫学报》2004,47(1):25-32
分别采用药膜法和浸叶法测定了菜蛾绒茧蜂Apanteles plutellae和小菜蛾Plutella xylostella对杀虫剂的敏感度。结果显示: 有机磷、氨基甲酸酯、拟除虫菊酯类杀虫剂、阿维菌素和锐劲特对菜蛾绒茧蜂高毒,而抑太保和Bt为低毒,然而,短时间(1 h)接触常规防治剂量的锐劲特、氰戊菊酯、氯氰菊酯和乙酰甲胺磷对菜蛾绒茧蜂低毒。增效剂胡椒基丁醚(PB)、磷酸三苯酯(TPP)和马来酸二乙酯(DEM)对菜蛾绒茧蜂的甲胺磷、克百威、氰戊菊酯、氯氰菊酯、阿维菌素和锐劲特敏感性增效显著,但对抑太保无增效作用。PB的增效作用显著高于TPP 和DEM。PB和TPP对菜蛾绒茧蜂羧酸酯酶(CarE),以及DEM对谷胱甘肽S转移酶(GST)具显著的活体抑制作用,但PB,TPP和 DEM对菜蛾绒茧蜂乙酰胆碱酯酶(AChE)无抑制作用。菜蛾绒茧蜂AChE的米氏常数(Km)、最大反应速度(Vmax)、CarE和GST活性分别为小菜蛾的0.22、2.08、4.60和0.45倍,甲胺磷、敌敌畏和克百威对菜蛾绒茧蜂AChE的双分子速度常数(Ki)分别为对小菜蛾的14.7、10.5 和26.0倍。酶与抑制剂反应温度增高将导致酶抑制率增高,尤其对菜蛾绒茧蜂AChE的抑制作用更为显著。上述结果表明,菜蛾绒茧蜂对有机磷和氨基甲酸酯类杀虫剂的高敏感性与其显著高的AChE敏感性有关,氧化代谢的解毒作用对菜蛾绒茧蜂耐药性的影响大于水解作用。此外,对小菜蛾和菜蛾绒茧蜂杀虫剂敏感性差异的毒理学原因进行了讨论。  相似文献   

11.
Zoophthora radicans (Zygomycetes: Entomophthorales), Diadegma semiclausum (Hymenoptera: Ichneumonidae), and Cotesia plutellae (Hymenoptera: Braconidae) are all natural enemies of the diamondback moth, Plutella xylostella (Lepidoptera: Yponomeutidae). Adult C. plutellae are not susceptible to Z. radicans infection but the pathogen can infect and kill adult D. semiclausum. Infection of adult D. semiclausum prior to exposure to P. xylostella host larvae significantly reduced the number of parasitoid cocoons subsequently developing from the host larvae. Although Z. radicans infection of P. xylostella larvae prior to parasitism by D. semiclausum or C. plutellae always resulted in the death of the immature parasitoids, neither species discriminated between healthy and Z. radicans-infected host larvae in an oviposition choice experiment. However, host larvae recently killed by Z. radicans were always rejected by D. semiclausum but sometimes accepted by C. plutellae. At 20 degrees C, egg to pupa development took 6.7 and 7.8 days for D. semiclausum and C. plutellae, respectively. C. plutellae parasitism significantly increased host instar duration but D. semiclausum parasitism did not. Cadavers of P. xylostella larvae parasitized 1 day prior to fungal infection showed no reduction in Z. radicans conidia yield. However, cadavers of larvae parasitized 3 days prior to fungal infection demonstrated a marked decrease in Z. radicans conidia yield. Z. radicans infection of P. xylostella larvae < or = 4 days after parasitism resulted in 100% parasitoid mortality; thereafter, the reduction in parasitoid cocoon yield decreased as the time between parasitism and initiation of fungal infection increased. The extended duration of the host larval stage induced by C. plutellae parasitism increased the availability of the parasitoid to the pathogen. Estimates of interspecific competition indicated a similar pattern for the interaction between Z. radicans and each species of parasitoid.  相似文献   

12.
Larvae of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Ypeunomutidae), cause severe economic damage to cabbage, Brassica oleracea L. variety capitata (Brassicaceae) and related vegetables in Thailand. Overuse of broad-spectrum insecticides for diamondback moth control is a serious problem and has obscured the contributions of indigenous parasitoids. Our objectives were to identify indigenous diamondback moth parasitoids in northern Thailand and to assess their potential for natural control. Six parasitoid species were reared from diamondback moth larvae and pupae collected in 1990 and in 2003-2004. These included the larval parasitoid Cotesia plutellae Kurdjumov (Braconidae), a larval-pupal parasitoid Macromalon orientale Kerrich (Ichneumonidae), and pupal parasitoids Diadromus collaris Gravenhorst (Ichneumonidae) and Brachymeria excarinata Gahan (Chalcididae). Single specimens of Isotima sp. Forster (Ichneumonidae) and Brachymeria lasus Walker (Chalcididae) also were reared from diamondback moth hosts. C. plutellae was the dominant larval parasitoid and was often reared from host larvae collected from fields sprayed regularly with insecticides; parasitism ranged from 14 to 78%. Average parasitism by M. orientale was only 0.5-6%. Parasitism of host pupae by D. collaris ranged from 9 to 31%, whereas B. excarinata pupal parasitism ranged from 9 to 25%. An integrated pest management (IPM) protocol using simple presence-absence sampling for lepidopterous larvae and the exclusive use of Bacillus thuringiensis (Bt) or neem resulted in the highest yields of undamaged cabbage compared with a control or weekly sprays of cypermethrin (local farmer practice). IPM programs focused on conservation of local diamondback moth parasitoids and on greater implementation of biological control will help alleviate growing public concerns regarding the effects of pesticides on vegetable growers and consumers.  相似文献   

13.
The braconid Cotesia plutellae is an important larval parasitoid of the diamondback moth (Plutella xylostella), a major pest of crucifers in the tropics and sub-tropics. The in-flight searching behaviour of C. plutellae was investigated in a wind tunnel and the close-range attack behaviour observed in cages. The relative importance of volatile stimuli emanating from the plant-host-complex, oilseed rape (Brassica napus) – P. xylostella, in the long-range attraction of C. plutellae was investigated. Plants that were mechanically damaged, or damaged by P. xylostella larvae, were attractive to the parasitoid. Host-damaged leaves remained attractive to the parasitoid after removal of the host larvae. These results indicate that C. plutellae predominantly uses plant derived stimuli in its in-flight searching behaviour. An oviposition experience or contact with a host-damaged leaf prior to the bioassay significantly increased the response to these volatile cues. The foraging behaviour of C. plutellae is compared with other braconid larval parasitoids attacking lepidopteran hosts on crucifers.  相似文献   

14.
Abstract:  Interspecific competition between Diadegma semiclausum and Cotesia plutellae was investigated at 25°C in the laboratory, by exposing the third instar larvae of the diamondback moth, Plutella xylostella to both species together, either species alone or by exposing the host larvae already parasitized by one species, at different intervals, to the other. When host larvae were exposed simultaneously to two species in one arena, parasitism rates of the host by each species were not reduced by the presence of the other species; joint parasitism rate by two species was not significantly higher than that by either parasitoid alone. Both parasitoids could lay eggs into the host larvae which had previously been parasitized by the other species, leading to the occurrence of multiparasitized hosts. When host larvae were parasitized first by D. semiclausum and then being followed within 1–2 h by exposing to C. plutellae , or vice versa, ensuing parasitoid cocoons from the multiparasitized host larvae were nearly all C. plutellae . When host larvae were parasitized initially by C. plutellae and then being followed by D. semiclausum two or more days later, all parasitoids ensued from the multiparasitized hosts were C. plutellae . In contrast, when host larvae were parasitized initially by D. semiclausum and then being followed by C. plutellae two or more days later, most host larvae could not survive to prepupae and most of the ensuing parasitoid adults from the surviving hosts were D. semiclausum . Dissections of host larvae at various time intervals after parasitization by the two parasitoids showed that development of both parasitoids in multiparasitized hosts were somewhat arrested, and that the first instar larvae of C. plutellae could initiate a physical attack on the larvae of D. semiclausum and remove the latter.  相似文献   

15.
Botanical preparations, usually from non-host plants, can be used to manipulate the behaviour of insect pests and their natural enemies. In this study, the effects of extracts of Chrysanthemum morifolium, a non-host plant of the diamondback moth, Plutella xylostella (Linnaeus), on the olfactory and oviposition responses of this phytophagous insect and on levels of parasitism by its specialist parasitoid Cotesia plutellae (Kurdjumov) were examined, using Chinese cabbage Brassica campestris L. ssp. pekinensis as the test host plant. Olfactometer tests showed that volatiles of chrysanthemum extract-treated host plants were less attractive to P. xylostella females than those from untreated host plants; and in contrast, volatiles of the chrysanthemum extract-treated host plants were more attractive to females of its parasitoid C. plutellae than those from untreated host plants. Oviposition preference tests showed that P. xylostella females laid only a small proportion of their eggs on chrysanthemum extract-treated host plants, while ovipositing parasitoid females parasitized a much higher proportion of host larvae feeding on the treated host plants than on untreated host plants. These results suggest that certain non-host plant compounds, when applied onto a host plant, may render the plant less attractive to a phytophagous insect but more attractive to its parasitoids. Application of such non-host plant compounds can be explored to develop push-pull systems to reduce oviposition by a pest insect and at the same time enhance parasitism by its parasitoids in crops.  相似文献   

16.
Abstract.  Teratocytes are cells that originate from the extra-embryonic tissues of some hymenopteran parasitoids, typically dissociate upon hatching, and develop in the host haemolymph. They are considered to be involved in parasitoid larval nutrient uptake, host immunosuppression and/or repression of competing parasitoid development. Teratocytes of the parasitoid, Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae) are found in its natural host, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae) and can be cultured in vitro . The present study demonstrates that teratocytes of C. plutellae possess a significantly depressive effect on host cellular immunity. When the hosts are preinjected with 200 cultured teratocytes (corresponding to the normal number of teratocytes released during wasp hatching), haemocyte nodulation is inhibited by approximately 40%, with younger teratocytes being more potent than older ones. Similarly, the medium in which teratocytes are cultured has similar immunosuppressive properties. In comparison, calyx fluid extracted from the C. plutellae ovary also has an immunosuppressive effect on P. xylostella . These two maternal (calyx fluid) and embryonic (teratocytes) factors are additive and result in a reduced level of nodule formation equivalent to that induced by natural parasitization. However, the immunosuppression of the parasitized P. xylostella does not appear to be due to inhibition of phospholipase A2, an immune mediator, because injection of arachidonic acid failed to restore haemocyte nodulation capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号