首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alanine is encoded by the four codons of the GC box (GCA, GCG, GCU, and GCC). Known alanine anticodons include the UGC, IGC, and VGC triplets (I = inosine; V = uridine-5-oxyacetic acid). The energy-minimized structures of all possible codon–anticodon combinations involving all the alanine codons GCA, GCG, GCU, and GCC with the alanine anticodons UGC, IGC, and VGC are studied using the AMBER software. Fifteen H-bonded duplex structures arising out of these combinations are studied here, all having Watson–Crick-type base pairs at the first and second codon positions, and a variety of base pairing possibilities at the third (or wobble) position. Structural and stability considerations suggest that some codon–anticodon duplexes would be more favored than others for accommodation during the translation process. The UGC anticodon is predicted to favor the GCA codon for reading, while the GCC codon is least favored. The IGC anticodon would prefer to read the GCC codon, the GCG codon being least favored, while a syn conformer for A in the GCA codon could allow for it to be read. For the VGC anticodon, the GCA codon is predicted to be read most favorably, and the GCC codon least favorably, while a syn conformer for V in the anticodon would allow for the codon GCU to be read through a wobble pair which involves the exocyclic 5-oxyacetate group of V in H-bonding.  相似文献   

2.
A novel concept on mechanisms of evolution of genes and genomes is suggested: the sequences evolve largely by local events of triplet expansion and subsequent mutational changes in the repeats. The immediate memory about the earlier expansion events still resides in the sequences, in form of the frequently occurring segments of tandemly repeating codons. Other predicted fossils of the original repeats are: (I) the expanding triplets should be accompanied by their point mutation derivatives and (II) the remaining excess of codons formerly belonging to the tandem repeats should be reflected in overall codon usage biases. Both predictions are confirmed by analysis of largest available database of non-redundant protein coding sequences, of total size ~5?×?10(9) codons. One important conclusion also follows from the results. Life which, presumably, started with replication of expanding triplets and their subsequent mutational changes, is continuing to emerge within the genes and genomes, in form of new events of triplet expansion.  相似文献   

3.
Friedreich ataxia is caused by expansion of a GAA triplet repeat (GAA-TR) in the FRDA gene. Normal alleles contain <30 triplets, and disease-causing expansions (66-1700 triplets) arise via hyperexpansion of premutations (30-65 triplets). To gain insight into GAA-TR instability we analyzed all triplet repeats in the human genome. We identified 988 (GAA)(8+) repeats, 291 with >or=20 triplets, including 29 potential premutations (30-62 triplets). Most other triplet repeats were restricted to <20 triplets. We estimated the expected frequency of (GAA)(6+) repeats to be negligible, further indicating that GAA-TRs have undergone significant expansion. Eighty-nine percent of (GAA)(8+) sequences map within G/A islands, and 58% map within the poly(A) tails of Alu elements. Only two other (GAA)(8+) sequences shared the central Alu location seen at the FRDA locus. One showed allelic variation, including expansions analogous to short Friedreich ataxia mutations. Our data demonstrate that GAA-TRs have expanded throughout primate evolution with the generation of potential premutation alleles at multiple loci.  相似文献   

4.
Behura SK  Severson DW 《Gene》2012,504(2):226-232
We present a detailed genome-scale comparative analysis of simple sequence repeats within protein coding regions among 25 insect genomes. The repetitive sequences in the coding regions primarily represented single codon repeats and codon pair repeats. The CAG triplet is highly repetitive in the coding regions of insect genomes. It is frequently paired with the synonymous codon CAA to code for polyglutamine repeats. The codon pairs that are least repetitive code for polyalanine repeats. The frequency of hexanucleotide and dinucleotide motifs of codon pair repeats is significantly (p<0.001) different in the Drosophila species compared to the non-Drosophila species. However, the frequency of synonymous and non-synonymous codon pair repeats varies in a correlated manner (r(2)=0.79) among all the species. Results further show that perfect and imperfect repeats have significant association with the trinucleotide and hexanucleotide coding repeats in most of these insects. However, only select species show significant association between the numbers of perfect/imperfect hexamers and repeat coding for single amino acid/amino acid pair runs. Our data further suggests that genes containing simple sequence coding repeats may be under negative selection as they tend to be poorly conserved across species. The sequences of coding repeats of orthologous genes vary according to the known phylogeny among the species. In conclusion, the study shows that simple sequence coding repeats are important features of genome diversity among insects.  相似文献   

5.
If we define a genetic code as a widespread DNA sequence pattern that carries a message with an impact on biology, then there are multiple genetic codes. Sequences involved in these codes overlap and, thus, both interact with and constrain each other, such as for the triplet code, the intron-splicing code, the code for amphipathic alpha helices, and the chromatin code. Nucleosomes preferentially are located at the ends of exons, thus protecting splice junctions, with the N9 positions of guanines of the GT and AG junctions oriented toward the histones. Analysis of protein-coding sequences reveals numerous traces of tandem repeats, apparently formed by triplet expansion, which in effect is a genome inflation ``code'. Our data are consistent with the hypothesis that expansion of simple tandem repetition of certain aggressive triplets has been a characteristic of life from its emergence. Such expanding triplets appear to be the major factor underlying observed codon usage biases.  相似文献   

6.
Simple repetitive DNA sequences from primates: Compilation and analysis   总被引:25,自引:0,他引:25  
Simple repeats composed of tandemly repeated units 1–6 nucleotides (nt) long have been extracted from a selected set of primate genomic DNA sequences. Of the 501 theoretically possible, different types of repeats only 67 were present in the analyzed database in at least two different size ranges over 12 nt. They include all simple repeats known to be polymorphic in the primate genome. A list of moderately expanding and nonexpanding oligonucleotide patterns has also been included. Furthermore, we have compiled statistical data with emphasis on the overall variability of the most abundant 67 types of repeats. We have demonstrated that the expandability of at least some simple repeats may be affected by the overall base composition and by flanking sequences. In particular, the occurrence of tandemly repeated CAG and GCC triplets in exons positively correlates with their G+C content. We also noted that in the vicinity of Alu sequences tetrameric repeats are more abundant than in the total genomic DNA. This paper can be used as a comprehensive guide in identification of the most abundant and potentially polymorphic simple repeats. It is also of broader significance as a step toward understanding the contribution of flanking sequences and the overall sequence composition to variability of simple repeats. Correspondence to: J. Jurka  相似文献   

7.
Structural basis for triplet repeat disorders: a computational analysis   总被引:3,自引:0,他引:3  
MOTIVATION: Over a dozen major degenerative disorders, including myotonic distrophy, Huntington's disease and fragile X syndrome, result from unstable expansions of particular trinucleotides. Remarkably, only some of all the possible triplets, namely CAG/CTG, CGG/CCG and GAA/TTC, have been associated with the known pathological expansions. This raises some basic questions at the DNA level. Why do particular triplets seem to be singled out? What is the mechanism for their expansion and how does it depend on the triplet itself? Could other triplets or longer repeats be involved in other diseases? RESULTS: Using several different computational models of DNA structure, we show that the triplets involved in the pathological repeats generally fall into extreme classes. Thus, CAG/CTG repeats are particularly flexible, whereas GCC, CGG and GAA repeats appear to display both flexible and rigid (but curved) characteristics depending on the method of analysis. The fact that (1) trinucleotide repeats often become increasingly unstable when they exceed a length of approximately 50 repeats, and (2) repeated 12-mers display a similar increase in instability above 13 repeats, together suggest that approximately 150 bp is a general threshold length for repeat instability. Since this is about the length of DNA wrapped up in a single nucleosome core particle, we speculate that chromatin structure may play an important role in the expansion mechanism. We furthermore suggest that expansion of a dodecamer repeat, which we predict to have very high flexibility, may play a role in the pathogenesis of the neurodegenerative disorder multiple system atrophy (MSA). CONTACT: pfbaldi@ics.uci.edu, yves@netid.com, brunak@cbs.dtu.dk, gorm@cbs.dtu.dk.  相似文献   

8.
The occurrence of nucleotides of the 3' side of codons has been determined in highly and weakly expressed genes from Escherichia coli. It was found that the usage of some amino acid codons in highly expressed genes was site specific, depending on the base 3' to the codon. The role of the 3' nucleotide as a modulator of codon translation effectiveness is discussed. The rules of synonymous codon usage in relation to the 3' flanking nucleotide have been established for highly expressed genes. For example, if a triplet next to the lysine codon starts with guanosine, lysine is preferably encoded by AAA and not by AAG (P less than 10(-8), while of cytidine is 3' to the lysine codon, AAG is preferred over AAA (P less than 0.001). These rules are observed in highly and absent in weakly expressed mRNAs and can be used in the chemical synthesis of genes designed for expression in E. coli.  相似文献   

9.
Translation initiation at non-AUG triplets in mammalian cells   总被引:35,自引:0,他引:35  
  相似文献   

10.
11.
12.
13.
RNA-ligand chemistry: a testable source for the genetic code   总被引:5,自引:3,他引:2       下载免费PDF全文
In the genetic code, triplet codons and amino acids can be shown to be related by chemical principles. Such chemical regularities could be created either during the code's origin or during later evolution. One such chemical principle can now be shown experimentally. Natural or particularly selected RNA binding sites for at least three disparate amino acids (arginine, isoleucine, and tyrosine) are enriched in codons for the cognate amino acid. Currently, in 517 total nucleotides, binding sites contain 2.4-fold more codon sequences than surrounding nucleotides. The aggregate probability of this enrichment is 10(-7) to 10(-8), had codons and binding site sequences been independent. Thus, at least some primordial coding assignments appear to have exploited triplets from amino acid binding sites as codons.  相似文献   

14.
15.
Using synthetic DNA constructs in vitro, we find that human DNA polymerase beta effectively catalyzes CAG/CTG triplet repeat expansions by slippage initiated at nicks or 1-base gaps within short (14 triplet) repeat tracts in DNA duplexes under physiological conditions. In the same constructs, Escherichia coli DNA polymerase I Klenow Fragment exo(-) is much less effective in expanding repeats, because its much stronger strand displacement activity inhibits slippage by enabling rapid extension through two downstream repeats into flanking non-repeat sequence. Polymerase beta expansions of CAG/CTG repeats, observed over a 32-min period at rates of approximately 1 triplet added per min, reveal significant effects of break type (nick versus gap), strand composition (CTG versus CAG), and dNTP substrate concentration, on repeat expansions at strand breaks. At physiological substrate concentrations (1-10 microm of each dNTP), polymerase beta expands triplet repeats with the help of weak strand displacement limited to the two downstream triplet repeats in our constructs. Such weak strand displacement activity in DNA repair at strand breaks may enable short tracts of repeats to be converted into longer, increasingly mutable ones associated with neurological diseases.  相似文献   

16.
An evolutionary analysis of mammalian amelogenin, the major protein of forming enamel, was conducted by comparison of 26 sequences (including 14 new ones) representative of the main mammalian lineages. Amelogenin shows highly conserved residues in the hydrophilic N- and C-terminal regions. The central hydrophobic region (most of exon 6) is more variable, but it has conserved a high amount of proline and glutamine located in triplets, PXQ, indicating that these residues play an important role. This region evolves more rapidly, and is less constrained, than the other well-conserved regions, which are subjected to strong constraints. The comparison of the substitution rates in relation to the CpG richness confirmed that the highly conserved regions are subjected to strong selective pressures. The amino acids located at important sites and the residues known to lead to amelogenesis imperfecta when substituted were present in all sequences examined. Evolutionary analysis of the variable region of exon 6 points to a particular zone, rich in either amino acid insertion or deletion. We consider this region a hot spot of mutation for the mammalian amelogenin. In this region, numerous triplet repeats (PXQ) have been inserted recently and independently in five lineages, while most of the hydrophobic exon 6 region probably had its origin in several rounds of triplet insertions, early in vertebrate evolution. The putative ancestral DNA sequence of the mammalian amelogenin was calculated using a maximum likelihood approach. The putative ancestral protein was composed of 177 residues. It already contained all important amino acid positions known to date, its hydrophobic variable region was rich in proline and glutamine, and it contained triplet repeats PXQ as in the modern sequences.Reviewing Editor: Dr. Cecilia Saccone  相似文献   

17.
Comparison of nucleotide sequences surrounding the initiation sites of a number of mRNAs reveals few common features. These may be the presence of in- or out-of-phase nonsense codons and (or) polypurine bases complementary to the 16S RNA of the 30S subunit of ribosomes. Since the bases which precede or follow an initiation site vary in length and composition we have examined whether they play a role as spacers between cistrons or whether they have an active function in the termination and initiation of translation. In vitro we have observed that some sequences 5' terminal to AUG are preferred over others in forming an initiation complex. The same bases have much less effect when present at the 3' terminal end of an AUG codon. When the 5' terminal codon is the termination codon UAA, absolutely no initiation complex can be detected. This suggests that spacing may be needed between a stop and a start codon. Conversely, the hexamer AUGUAA failed to elicit chain termination. This was so in systems that terminated when free UAA was added or when a sense triplet was present between the initiation and termination triplets. These results suggest that ribosomes may recognize the stop triplet. Hence ribosomes may not obey simple A and P site models in the termination reaction.  相似文献   

18.
Complete chromosome/genome sequences available from humans, Drosophila melanogaster, Caenorhabditis elegans, Arabidopsis thaliana, and Saccharomyces cerevisiae were analyzed for the occurrence of mono-, di-, tri-, and tetranucleotide repeats. In all of the genomes studied, dinucleotide repeat stretches tended to be longer than other repeats. Additionally, tetranucleotide repeats in humans and trinucleotide repeats in Drosophila also seemed to be longer. Although the trends for different repeats are similar between different chromosomes within a genome, the density of repeats may vary between different chromosomes of the same species. The abundance or rarity of various di- and trinucleotide repeats in different genomes cannot be explained by nucleotide composition of a sequence or potential of repeated motifs to form alternative DNA structures. This suggests that in addition to nucleotide composition of repeat motifs, characteristic DNA replication/repair/recombination machinery might play an important role in the genesis of repeats. Moreover, analysis of complete genome coding DNA sequences of Drosophila, C. elegans, and yeast indicated that expansions of codon repeats corresponding to small hydrophilic amino acids are tolerated more, while strong selection pressures probably eliminate codon repeats encoding hydrophobic and basic amino acids. The locations and sequences of all of the repeat loci detected in genome sequences and coding DNA sequences are available at http://www.ncl-india.org/ssr and could be useful for further studies.  相似文献   

19.
The genetic instabilities of (CCTG.CAGG)(n) tetranucleotide repeats were investigated to evaluate the molecular mechanisms responsible for the massive expansions found in myotonic dystrophy type 2 (DM2) patients. DM2 is caused by an expansion of the repeat from the normal allele of 26 to as many as 11,000 repeats. Genetic expansions and deletions were monitored in an African green monkey kidney cell culture system (COS-7 cells) as a function of the length (30, 114, or 200 repeats), orientation, or proximity of the repeat tracts to the origin (SV40) of replication. As found for CTG.CAG repeats related to DM1, the instabilities were greater for the longer tetranucleotide repeat tracts. Also, the expansions and deletions predominated when cloned in orientation II (CAGG on the leading strand template) rather than I and when cloned proximal rather than distal to the replication origin. Biochemical studies on synthetic d(CAGG)(26) and d(CCTG)(26) as models of unpaired regions of the replication fork revealed that d(CAGG)(26) has a marked propensity to adopt a defined base paired hairpin structure, whereas the complementary d(CCTG)(26) lacks this capacity. The effect of orientation described above differs from all previous results with three triplet repeat sequences (including CTG.CAG), which are also involved in the etiologies of other hereditary neurological diseases. However, similar to the triplet repeat sequences, the ability of one of the two strands to form a more stable folded structure, in our case the CAGG strand, explains this unorthodox "reversed" behavior.  相似文献   

20.
Mitochondrial (mt) tRNA(Trp), tRNA(Ile), tRNA(Met), tRNA(Ser)GCU, tRNA(Asn)and tRNA(Lys)were purified from Drosophila melanogaster (fruit fly) and their nucleotide sequences were determined. tRNA(Lys)corresponding to both AAA and AAG lysine codons was found to contain the anticodon CUU, C34 at the wobble position being unmodified. tRNA(Met)corresponding to both AUA and AUG methionine codons was found to contain 5-formylcytidine (f(5)C) at the wobble position, although the extent of modification is partial. These results suggest that both C and f(5)C as the wobble bases at the anticodon first position (position 34) can recognize A at the codon third position (position 3) in the fruit fly mt translation system. tRNA(Ser)GCU corresponding to AGU, AGC and AGA serine codons was found to contain unmodified G at the anticodon wobble position, suggesting the utilization of an unconventional G34-A3 base pair during translation. When these tRNA anticodon sequences are compared with those of other animal counterparts, it is concluded that either unmodified C or G at the wobble position can recognize A at the codon third position and that modification from A to t(6)A at position 37, 3'-adjacent to the anticodon, seems to be important for tRNA possessing C34 to recognize A3 in the mRNA in the fruit fly mt translation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号