首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A set of n-(9-anthroyloxy) fatty acid probes (n = 2, 6, 9, 12) have been used to examine gradients in fluorescence polarization, lifetime (tau F), relative quantum yield (phi rel) and positions of emission maxima (lambda max) through bilayers composed of synthetic phospholipids. The fluorophores of these probes report the environment at a graded series of depths from the surface to the centre of the bilayer structure. 1. Polarizations decrease as the fluorophore is moved deeper into the bilayer indicating greater rotational motion of the fluorophore in the hydrocarbon core of the bilayer. 2. The different responses of the probe diphenylhexatriene and the anthroyloxy fatty acids to the action of cholesterol on lipid bilayers are discussed in terms of the orientation of these probes in the bilayer and the types of anisotropic rotational motions which result in depolarization of fluorescence. 3. Stearic acid derivatives which have the fluorophore in the 6-, 9- and 12-positions along the acyl chain have a similar response to solvent polarity as measured by values of lambda max and phi rel in a variety of organic solvents. 4. The position of the emission maximum has little dependence on solvent viscosity, but viscosity does change the degree of vibrational structure seen in the emission spectrum. The vibrational structure itself may be used as an indication of the 'mciroviscosity' gradient in the transverse plane of the bilayer. 5. Values of lambda max, tau F and phi rel indicate that a gradient of polarity exists from the surface to the centre of the bilayer. For dipalmitoyl phosphatidylcholine in the crystalline phase, cholesterol acts to make this polarity gradient shallower.  相似文献   

2.
Using the phase-modulation technique, we have measured the fluorescence decay of 2- and 12-(9-anthroyloxy)-stearic acid (2- and 12-AS) and 16-(9-anthroyloxy)-palmitic acid (16-AP) bound to egg phosphatidylcholine vesicles or dissolved in nonpolar solvents. Heterogeneity analysis demonstrates that the decay is generally not monoexponential and exhibits large component variations across it emission spectrum. The mean decay time increases (and in parallel, the steady-state polarization decreases) monotonically with increasing wavelength from values at the blue end. The decay at the red side of the emission spectrum contains an exponential term with a negative amplitude, indicating that emission occurs from intermediates created in the excited-state. This behavior is interpreted as arising from intramolecular fluorophore relaxation occurring on the time scale of the fluorescence lifetime. We believe this to be the first study of wavelength-dependent fluorescent emission which is dominated by an intramolecular relaxation process. Although the three probes exhibit qualitatively similar effects, the emission band variations are greatest for 2-AS and smallest for 16-AP. The differences among the probes are not entirely due to environmental factors as demonstrated, for example, by the emission polarization differences observed in the isotropic solvent paraffin oil. In summary, while these findings point out some of the complexities in the 9-anthroyloxy-fatty acids as membrane probes, they also indicate how these complexities might be used as a sensitive measure of lipid-probe interaction.  相似文献   

3.
In continuation of earlier work, the steady-state fluorescence polarization in a globally oriented system of planar lipid membranes was analyzed experimentally and theoretically for the fluorophores 8-anilino-1-naphthalenesulfonate, 1,6-diphenyl-1,3, 5-hexatriene, dansyllysine-valinomycin and n-(9-anthroyloxy) fatty acids. The theoretical analyses of experiments were mainly done in terms of the mean orientation of transition moments with respect to the membrane normal, an angle describing the region of hindered rotational diffusion and the coefficients of rotational diffusion perpendicular to the membrane and around the membrane normal. The nonvanishing angle between the moments of absorption and emission was taken into account. In the case of n-(9-anthroyloxy) fatty acids it was found that the orientational disorder increases significantly with the depth of the fluorophore within the membrane. In order to compare with recent results from time-dependent fluorescent polarization in globally isotropic membrane suspensions and with 2H-NMR experiments, the second moment ('order parameter') of the steady-state orientational distribution of absorption dipoles was calculated. For all fluorophores the theoretical analysis indicates a preferred orientation of absorption moments within the membrane plane.  相似文献   

4.
Pump-and-probe techniques can be used to follow the slow rotational motions of fluorescent labels bound to macromolecules in solution. A strong pulse of polarized light initially anisotropically depletes the ground-state population. A continuous low-intensity beam of variable polarization then probes the anisotropic ground-state distribution. Using an additional emission polarizer, the generated fluorescence can be recorded as it rises towards its prepump value. A general theory of fluorescence recovery spectroscopy (FRS) is presented that allows for irreversible depletion processes like photobleaching as well as slowly reversible processes like triplet formation. In either case, rotational motions modulate recovery through cosine-squared laws for dipolar absorption and emission processes. Certain pump, probe, and emission polarization directions eliminate the directional dependence of either dipole and simplify the resulting expressions. Two anisotropy functions can then be constructed to independently monitor the rotations of either dipole. These functions are identical in form to the anisotropy used in fluorescence depolarization measurements and all rotational models developed there apply here with minor modifications. Several setups are discussed that achieve the necessary polarization alignments. These include right-angle detection equipment that is commonly available in laboratories using fluorescence methods.  相似文献   

5.
The effect of surfactants on the "fluidity" of dipalmitoylphosphatidylcholine (DPPC) vesicle membrane was studied by means of the fluorescence depolarization technique with fatty acid fluorescent probes, in which the anthroyloxy group is introduced at different positions along the acyl chain. Three types of surfactants were examined; anionic sodium alkylsulfates, cationic alkyltrimethylammonium chlorides, and non-ionic alkanoyl-N-methylglucamides (MEGA-n). Perturbing effects of the surfactants depended on both the alkyl chain-length and the type of head group. Sodium alkylsulfates with octyl- and decyl-chain and alkyltrimethylammonium chlorides with octyl-, decyl- and dodecyl-chain did not affect the membrane fluidity when incorporated in the membrane, whereas sodium dodecylsulfate and tetradecyltrimethylammonium chloride decreased the membrane fluidity at both gel and liquid crystalline states of the membrane. All the MEGA series surfactants decreased the membrane fluidity, whose perturbing potency was in the order of MEGA-8 less than MEGA-9 approximately equal to MEGA-10. The perturbation at different depths in the membrane by sodium dodecylsulfate and MEGA-9 was also examined. No significant change in the fluidity gradient across the membrane was induced by the addition of these surfactants.  相似文献   

6.
13C NMR has been used to confirm the structure of two fluorescent probes, n-(9-anthroyloxy)-stearic acids (n=6,12), and the series of n-hydroxy-fatty acids (n=2,6,9,12) from which the set of fluorescent fatty acids may be synthesised. 13C longitudinal relaxation times and correlation times of the individual carbon atoms in 12-hydroxy- and 6- and 12-(9-anthroyloxy)-stearic acids show differences in motional properties between these derivatives and the parent stearic acid in chloroform(d) solution. The correlation times of the substituted carbons in 6-, 9-, and 12-hydroxy-stearic acids are longer than the corresponding carbons in stearic acid. The change in correlation times at the substituted carbons reflects the increase in motion along the acyl chain. Attachment of the bulky anthracene ring causes greater restriction of motion at the substituted carbon atom but the gradient of motion along the chain is preserved. These results are discussed in terms of the types of motion which lead to fluorescence depolarization when the fluorescent fatty acids are used as fluidity probes in biomembranes.  相似文献   

7.
8.
Dehydroergosterol has been widely used as a fluorescent analog of cholesterol for the investigation of lipoprotein, model membrane, and biological membrane structure. Although its synthesis was reported over fifty years ago, the complete structure and assignment of the three double bonds in the rings has not heretofore been firmly established. Therefore, dehydroergosterol was synthesized and purified by reverse phase high performance liquid chromatography. The proposed structure (8, 7, 9(11), 22-ergostatetraen-3-o1), including the location of the double bond at 9(11), was confirmed by mass spectroscopy,1H-NMR, and13C-NMR. In addition, a convenient assay for determination of impurities in dehydroergosterol preparations utilizing absorbance peak ratios is described. The spectroscopic properties of dehydroergosterol are highly dependent on solvent dielectric constant. Dehydroergosterol was incorporated into sonicated unilamellar vesicles composed of dimyristoylphosphatidylcholine or distearoylphosphatidylcholine. Arrhenius plots of dehydroergosterol fluorescence polarization indicated that the sterol was sensitive to the phase transitions of these phospholipids near 23° and 54°C, respectively. Differential polarized phase fluorescence and lifetime analysis were used to determine the dynamic properties of dehydroergosterol in the vesicles. At 37°C the limiting anisotropy, order parameter, and rotational rate of dehydroergosterol in dimyristoylphosphatidylcholine were 0.162, 0.65, and 0.71 nsec, respectively. The limiting anisotropy and order parameter, but not the rotational rate, of dehydroergosterol were sensitive to the temperature and/or the physical state of the phospholipid.  相似文献   

9.
The effects of fluorescent probes 9-aminoacridine (9AA) and atebrine (AT) on physical properties of liposomes and planar bilayer lipid membranes (BLM) were studied. The method of fluorescence spectroscopy and the electrostriction method based on measurement of higher current harmonics were used. At low concentrations (10(-5)-5 x 10(-5) mol/l), 9AA increased fluorescence intensity, while in liposomes from soybean phosphatidylcholine fluorescence quenching occurred at higher probe concentration. Fluorescence quenching occurred over the entire concentration range tested (10(-5)-10(-4) mol/l) in liposomes made from a mixture of egg phosphatidylcholine and cardiolipin. In contrast to 9AA, AT, thanks to its hydrophobic chain, penetrates deeper into the hydrophobic membrane moiety; thus, immobilization of the molecule and an increase in fluorescence intensity was always observed. Probes adsorbed to membranes, leaving their electric capacitance effectively unchanged. Adsorption of charged dye particles induced small changes in transmembrane potential. In the presence of 10(-5) mol/l AT, the modulus of elasticity E perpendicular increased somewhat for soft membranes (E perpendicular approximately 2.5 x 10(7) Pa), whereas it decreased for hard membranes (E perpendicular approximately 5 x 10(7) Pa). pH gradient present on the membrane affected the ability of the dyes to incorporate into the membranes. Our results provide evidence against the proposed model of the quenching mechanism introduced by Rottenberg and Lee (1975).  相似文献   

10.
The microstructure of lipid bilayer in synaptosomes from rat brain upon K+-depolarization (30 mM) was studied using the inductive resonance energy transfer (IRET) from proteins to the fluorescent probes, pyrene and DMC (4-dimethylaminochalcone). The effectiveness of IRET was not changed by the K+-depolarization. The monomer-to-eximer ration (Fm285/Fe285) of pyrene fluorescence intensities in IRET was 1.5 times lower upon depolarization than in controls. This suggested a decreased microviscosity of the lipid bilayer in immediate environment to proteins of the synaptosomal membrane. The Fm338/Fee338 ratio as well as polarization of DMC fluorescence indicative of the bulk lipid phase were not altered under these conditions. Neither cytochalasin B not colchicine had any effect on fluorescence polarization of DMC both in control and depolarized synaptosomes. It is suggested that the increased lateral mobility of protein-associated lipid molecules found in depolarized synaptosomes may be caused by alterations in the activity of ion channels and ion pumps or by restructuring of the cytoskeletal network.  相似文献   

11.
To follow microviscosity changes in membranes associated with fibrinogen binding to human platelets, specific fluorescent probes were used and their fluorescence anisotropy was analysed. The degree of fluorescence anisotropy of diphenylhexatriene, anilinonaphthalene sulfonate (ANS) and fluorescamine increased significantly when fibrinogen reacted with its membrane receptors. Fluorescence polarization analyses showed that fibrinogen binding to platelet membranes is accompanied by an increase in the membrane lipid rigidity. On the other hand, changes in the fluorescence anisotropy of membrane tryptophans and N-(3-pyrene)maleimide suggest augmented mobility of the membrane proteins. The binding of fibrinogen to the membrane receptors is not accompanied by any change in the fluorescence intensity of ANS attached to the membranes. This may suggest that covering of platelets with fibrinogen molecules does not influence the surface membrane charge.  相似文献   

12.
E (eosin)-type delayed fluorescence depolarization studies extend the time range for the measurement of rotational diffusion to microseconds and ms, thereby allowing investigation of slow rotational movement of macromolecules like membrane proteins. An apparatus is described for the determination of time-dependent anisotropy in this interesting time range. The method has been tested on eosin-labelled cytochrome P-450 incorporated into phospholipid membrane vesicles.  相似文献   

13.
The presence of tryptophan residues as intrinsic fluorophores in most proteins makes them an obvious choice for fluorescence spectroscopic analyses of such proteins. Membrane proteins have been reported to have a significantly higher tryptophan content than soluble proteins. The role of tryptophan residues in the structure and function of membrane proteins has attracted a lot of attention. Tryptophan residues in membrane proteins and peptides are believed to be distributed asymmetrically toward the interfacial region. Tryptophan octyl ester (TOE) is an important model for membrane-bound tryptophan residues. We have characterized this molecule as a fluorescent membrane probe in terms of its ionization, partitioning, and motional characteristics in unilamellar vesicles of dioleoylphosphatidylcholine. The ionization property of this molecule in model membranes has been studied by utilizing its pH-dependent fluorescence characteristics. Analysis of pH-dependent fluorescence intensity and emission maximum shows that deprotonation of the alpha-amino group of TOE occurs with an apparent pKa of approximately 7.5 in the membrane. The fluorescence lifetime of membrane-bound TOE also shows pH dependence. The fluorescence lifetimes of TOE have been interpreted by using the rotamer model for the fluorescence decay of tryptophan. Membrane/water partition coefficients of TOE were measured in both its protonated and deprotonated forms. No appreciable difference was found in its partitioning behavior with ionization. Analysis of fluorescence polarization of TOE as a function of pH showed that there is a decrease in polarization with increasing pH, implying more rotational freedom on deprotonation. This is further supported by pH-dependent red edge excitation shift and the apparent rotational correlation time of membrane-bound TOE. TOE should prove useful in monitoring the organization and dynamics of tryptophan residues incorporated into membranes.  相似文献   

14.
Translational and rotational diffusion of fluorescent molecules on the surface of small biological systems such as vesicles, proteins and micelles depolarize the fluorescence. A recent study has treated the case of the translational dynamics of surface probes (M.M.G. Krishna, R. Das, N. Periasamy and R. Nityananda, J. Chem. Phys., 112 (2000) 8502-8514) using Monte Carlo and theoretical methods. Here we extend the application of the methodologies to apply the case of rotational dynamics of surface probes. The corresponding fluorescence anisotropy decays were obtained using the Monte Carlo simulation methods for the two cases: surface probes undergoing rotational dynamics on a plane and on a sphere. The results were consistent with the theoretical equations which show that Monte Carlo methods can be used to simulate the surface diffusion problems. The anisotropy decay for the rotational diffusion of a molecule on a planar surface is single exponential and the residual anisotropy is zero. However, residual anisotropy is finite for the case of rotational diffusion on a sphere because of the spatial averaging of the anisotropy function. The rotational correlation time in both the cases is (4Drot)(-1) with Drot being the rotational diffusion coefficient. Rotational dynamics of a surface bound dye in a single giant liposome and in sonicated vesicles were studied and the results were explained according to the theoretical equations. A fast component of fluorescence depolarization was also observed for sonicated vesicles which was interpreted as wobbling-in-cylinder dynamics of the surface-bound dye.  相似文献   

15.
The fluorescence quenching of the n-(9-anthroyloxy) (AO) fatty acid probes has been investigated in aqueous dispersions, vesicles of egg phosphatidylcholine and vesicles formed from red cell ghosts. Negatively charged (KI), neutral (acrylamide) and positively charged (CuSO4) quenchers were used to monitor the location of the probes. The fluorescence of the probes, with the exception of the shortest chain (11-(9-anthroyloxy)undecanoic acid) is not quenched by acrylamide when associated with vesicles. This indicates that in association with vesicles, the 9-anthroyloxy moiety of the long chain probes is buried within the hydrocarbon region and thus well shielded from the aqueous phase. Measurements with KI indicate that the probes are present in the membrane at depths corresponding to the position of the 9-anthroyloxy moiety on the fatty acid, and that the quencher itself forms a concentration gradient within the membrane. Very little or no CuSO4 quenching was observed for n-(9-anthroyloxy)stearic acid probes (n-AS)with n > 2, suggesting that in these vesicles Cu2+ does not significantly penetrate the bilayer.  相似文献   

16.
P J Sims 《Biochemistry》1984,23(14):3248-3260
Human complement protein C9 was covalently labeled with the fluorescent chromophore fluorescein isothiocyanate (FITC) with only a small reduction in the cytolytic activity of the protein. Polymerization of the labeled protein--either by incubating with lipid vesicles treated with complement proteins C5b-8 (activating the C5b-9 membrane lesion) or by heating the protein [Tschopp, J., Muller-Eberhard, H.J., & Podack, E.R. (1982) Nature (London) 298, 534]--resulted in a 40-60% decrease in the fluorescence emission from FITC. The decrease in total fluorescence was accompanied by an increase in the steady-state anisotropy following activation and polymerization of FITC-C9 by C5b-8 membranes, while heat-induced aggregation of the protein resulted in a dramatic depolarization of fluorescence. Only small changes in either the absorbance spectrum or fluorescence lifetime of the chromophore were detected upon FITC-C9 polymerization. Evidence is presented that the measured changes in FITC fluorescence upon C9 activation are due to self energy transfer between closely apposed fluorescein chromophores which occur in the polymerized form of the protein. The significance of these observations to the molecular structure of the assembled C5b-9 complex is discussed, as are the potential applications of this fluorescent derivative of C9.  相似文献   

17.
Bull sperm heads and tails have been separated by proteolytic digestion (trypsin) and plasma membranes have been isolated, using discontinuous sucrose density gradient centrifugation. Plasma membrane bound Ca2+-ATPase is shown to be associated mostly with the tail membranes. Pyrene excimer fluorescence and diphenylhexatriene fluorescence polarization experiments indicate a more fluid lipid phase in the tail region. Differences in surface charge distribution have been found, using 1-anilinonaphthalene-8-sulfonate and Tb3+ as fluorescent probes.  相似文献   

18.
A new method for the detection of PNA/DNA hybrids is presented. In this method, short PNA probes (9-13 mer) are labeled with a fluorescent dye and allowed to hybridize to target DNA molecules. A cationic polyamino acid, such as polylysine, is then added to the reaction mixture, whereupon the DNA molecules bind electrostatically to this polycation. The PNA probes, which are uncharged or may carry only a small charge due to the fluorescent dye, do not bind to polylysine unless hybridized to the negatively charged DNA target. The binding of the labeled PNA/DNA hybrid to the high-molecular-weight polymer leads to a significant change in the rotational correlation time of the fluorophore attached to the PNA. This can be conveniently detected by measuring the fluorescence polarization of the latter. The method is completely homogeneous because no separation of free from bound PNA probe is required. The hybridization and dehybridization reactions can be followed in real time. The method has been applied to the typing of single-nucleotide polymorphisms in PCR products.  相似文献   

19.
20.
Summary The detergent Brij 58 has been introduced to reverse plasma membrane (PM) vesicles from the right-side-out to the inside-out form. The aim of the present work was to investigate the effect of Brij 58 on the formation of an ATP-dependent proton gradient and on the fluidity of the lipid phase of PM vesicles. PMs of corn (Zea mays L.) roots were isolated by phase-partitioning. The fluidity of PMs was estimated by measurement of fluorescence polarization with 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH) and 1,6-diphenyl-1,3,5-hexatriene (DPH). The PMs of corn roots were relatively rigid. The hydrophobic part of the lipid bilayer was more fluid than the hydrophilic part. After intercalation of Brij 58 into the lipid bilayer the membrane fluidity changed in a concentration-dependent manner. Treatment with the detergent Brij 58 increased the degree of fluorescence polarization for TMA-DPH, while it decreased it for DPH. This effect was saturated at a detergent-to-protein ratio of 1 4 for both fluorescence probes. Although the biophysical characteristics of the membrane were changed after Brij 58 treatment, the formation of ATP-dependent proton gradients could still be measured with those vesicles. The generation of an ATP-dependent proton gradient with Brij 58-treated PM vesicles suggests that the detergent treatment indeed turned the originally right-side-out vesicles to sealed inside-out vesicles. The limits of the effect caused by Brij 58 in the context of PM enzyme activities are discussed.Abbreviations Brij 58 polyoxyethylene 20 cetyl ether - DPH 1,6-diphenyl-1,3,5-hexatriene - HCF III hexacyanoferrate (III) - ISO inside-out - PM plasma membrane - RSO right-side-out - TMA-DPH 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号