共查询到20条相似文献,搜索用时 15 毫秒
1.
Joshua Allen Peterson Richard Vernon Oblad Jeffrey Chad Mecham Jason Donald Kenealey 《Biochemistry and Biophysics Reports》2016
Plasma membrane Ca2+-ATPase (PMCA) plays a vital role in maintaining cytosolic calcium concentration ([Ca2+]i). Given that many diseases have modified PMCA expression and activity, PMCA is an important potential target for therapeutic treatment. This study demonstrates that the non-toxic, naturally-occurring polyphenol resveratrol (RES) induces increases in [Ca2+]i via PMCA inhibition in primary dermal fibroblasts and MDA-MB-231 breast cancer cells. Our results also illustrate that RES and the fluorescent intracellular calcium indicator Fura-2, are compatible for simultaneous use, in contrast to previous studies, which indicated that RES modulates the Fura-2 fluorescence independent of calcium concentration. Because RES has been identified as a PMCA inhibitor, further studies may be conducted to develop more specific PMCA inhibitors from RES derivatives for potential therapeutic use. 相似文献
2.
Sonal Srikanth Hea-Jin Jung Bernard Ribalet Yousang Gwack 《The Journal of biological chemistry》2010,285(7):5066-5075
Store-operated Ca2+ entry (SOCE) due to activation of Ca2+ release-activated Ca2+ (CRAC) channels leads to sustained elevation of cytoplasmic Ca2+ and activation of lymphocytes. CRAC channels consisting of four pore-forming Orai1 subunits are activated by STIM1, an endoplasmic reticulum Ca2+ sensor that senses intracellular store depletion and migrates to plasma membrane proximal regions to mediate SOCE. One of the fundamental properties of CRAC channels is their Ca2+-dependent fast inactivation. To identify the domains of Orai1 involved in fast inactivation, we have mutated residues in the Orai1 intracellular loop linking transmembrane segment II to III. Mutation of four residues, V151SNV154, at the center of the loop (MutA) abrogated fast inactivation, leading to increased SOCE as well as higher CRAC currents. Point mutation analysis identified five key amino acids, N153VHNL157, that increased SOCE in Orai1 null murine embryonic fibroblasts. Expression or direct application of a peptide comprising the entire intracellular loop or the sequence N153VHNL157 blocked CRAC currents from both wild type (WT) and MutA Orai1. A peptide incorporating the MutA mutations had no blocking effect. Concatenated Orai1 constructs with four MutA monomers exhibited high CRAC currents lacking fast inactivation. Reintroduction of a single WT monomer (MutA-MutA-MutA-WT) was sufficient to fully restore fast inactivation, suggesting that only a single intracellular loop can block the channel. These data suggest that the intracellular loop of Orai1 acts as an inactivation particle, which is stabilized in the ion permeation pathway by the N153VHNL157 residues. These results along with recent reports support a model in which the N terminus and the selectivity filter of Orai1 as well as STIM1 act in concert to regulate the movement of the intracellular loop and evoke fast inactivation. 相似文献
3.
M S Goligorsky 《FEBS letters》1988,240(1-2):59-64
Cytosolic Ca2+ concentration and membrane potential were monitored in individual cultured enothelial cells mechanically stimulated with a micropipette attached to the stage of a microscope. Both dimpling and poking of endothelial cells resulted in Ca2+i transients (from 63 ± 12 to 397 ± 52 nM, characterized by a refractory period of approx. 2 min) and cell depolarization. Ca2+i transients of the reduced amplitude (201 ± 41 nM) were evoked by mechanical stimulation of endothelial cells incubated in a Ca2+-free medium. Dimpling-induced Ca2+i transients were refractory to the pretreatments with pertussis toxin, colchicine, or cytochalasin B, and were not mimicked by an increase in the hydrodynamic pressure. In a co-perfusion system (endothelium: smooth muscle), both the KCl-induced depolarization and ionomycin-induced increase in Ca2+i in the endothelial cells resulted in the reduction of Ca2+i in the smooth muscle cells. The data reported are consistent with the phenomenon of vascular relaxation in response to the increased blood flow. We hypothesize that the mechanical interaction of the formed elements with the microvascular endothelium can serve as a pacemaker for the sustained relaxation of vascular smooth muscle. 相似文献
4.
Takatsuka K Ishii TM Ohmori H 《Biochemical and biophysical research communications》2005,336(1):316-323
Here, we report the properties of a FRET-based calcium indicator protein. We constructed a tandem fusion protein, named F2C, of ECFP and EYFP combined with calpain-sensitive sequences of alpha-spectrin, with N-terminal palmitoylation signal of GAP-43. It was previously reported that calpain cleaved a similar ECFP-EYFP fusion protein linked by a calpain-sensitive sequence of alpha-spectrin (fodrin). Unexpectedly, F2C was not cleaved by calpain, but demonstrated properties of a Ca(2+) indicator when transiently infected in Purkinje cells of rat primary cerebellar culture or in the brainstem neurons infected in vivo using Sindbis virus encoding F2C. The emission ratio of 480nm/535nm was repeatedly increased when the intracellular Ca(2+) concentration ([Ca(2+)](i)) was raised. F2C had a Ca(2+) sensitivity with an apparent dissociation constant (K(d) for Ca(2+)) of 150nM, and demonstrated kinetics that paralleled Fura-2 when [Ca(2+)](i) was measured simultaneously. These properties of F2C are useful to be a Ca(2+) indicator. 相似文献
5.
6.
Moccia F Billington RA Santella L 《Biochemical and biophysical research communications》2006,348(2):329-336
The recently discovered second messenger nicotinic acid adenine dinucleotide phosphate (NAADP) is central to the onset of intracellular Ca2+ signals induced by several stimuli, including fertilization. The nature of the Ca2+ pool mobilized by NAADP is still controversial. Depending on the cell type, NAADP may target either an acidic compartment with lysosomal properties or ryanodine receptors (RyRs) on endoplasmic reticulum. In addition, NAADP elicits a robust Ca2+ influx into starfish oocytes by activating a Ca2+-mediated current across the plasma membrane. In the present study, we employed the single-electrode intracellular recording technique to assess the involvement of either acidic organelles or RyRs in NAADP-elicited Ca2+ entry. We found that neither drugs which interfere with acidic compartments nor inhibitors of RyRs affected NAADP-induced depolarization. These data further support the hypothesis that a yet unidentified plasma membrane Ca2+ channel is the target of NAADP in starfish oocytes. 相似文献
7.
川楝素是我国学者从驱蛔中药中分离、鉴定的一个三萜化合物,已证明具选择地影响神经递质释放,有效地对抗肉毒中毒,促进细胞分化、凋亡,抑制肿瘤增殖,抑制昆虫发育和取食,影响K 、Ca2 通道活动等多种生物效应.综述了证明川楝素抑制多种K 通道,选择地易化L型Ca2 通道和进而升高胞内Ca 浓度的研究资料,并对川楝素产生这些生物效应的机制进行了讨论. 相似文献
8.
H. S. Hsiao R. Payne 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1998,183(2):193-202
In contrast to insect species, light-activated influx of divalent ions into Limulus ventral photoreceptors has proven difficult to demonstrate. We used the quench of the fluorescent indicator dye, fura-2,
to measure Mn2+ influx. Limulus ventral photoreceptors were injected with fura-2 and excited at 360 nm. When the photoreceptors were bathed in 1 mmol · l−1 Mn2+, an approximately 1% per 10 s decline in the fura-2 fluorescence during intervals between 50-ms flashes was taken as a measure
of Mn2+ entry in darkness. Fluorescence decline during 10-s flashes was used to monitor Mn2+ entry during the photoresponse. During the 10-s flashes we observed a small rapid decline of the fura-2 fluorescence even
in the absence of Mn2+. This reflected a contamination of the fluorescence signal arising from light-induced release of intracellular calcium stores.
A subsequent slower decline in fluorescence during the 10-s flash, amounting to approximately 9% per 10 s, was only observed
in the presence of extracellular Mn2+ and was attributed to Mn2+ influx. This light-activated influx was not through voltage-gated calcium channels since it persisted under voltage clamp,
was not stimulated by depolarizing current injections, nor blocked by NiCl2. Depletion of internal calcium stores by cyclopiazonic acid treatment did not accelerate Mn2+ influx.
Accepted: 30 January 1998 相似文献
9.
We investigated the cytosolic free calcium concentration ([Ca2+]i) of leech Retzius neurons in situ while varying the extracellular Ca2+ concentration via the bathing solution ([Ca2+]B). Changing [Ca2+]B had only an effect on [Ca2+]i if the cells were depolarized by raising the extracellular K+ concentration. Surprisingly, raising [Ca2+]B from 2 to 10 mm caused a decrease in [Ca2+]i, and an increase was evoked by reducing [Ca2+]B to 0.1 mm. These changes were not due to shifts in membrane potential. At low [Ca2+]B moderate membrane depolarizations were sufficient to evoke a [Ca2+]i increase, while progressively larger depolarizations were necessary at higher [Ca2+]B. The changes in the relationship between [Ca2+]i and membrane potential upon varying [Ca2+]B could be reversed by changing extracellular pH. We conclude that [Ca2+]B affects [Ca2+]i by modulating Ca2+ influx through voltage-dependent Ca2+ channels via the electrochemical Ca2+ gradient and the surface potential at the extracellular side of the plasma membrane. These two parameters are affected in
a counteracting way: Raising the extracellular Ca2+ concentration enhances the electrochemical Ca2+ gradient and hence Ca2+ influx, but it attenuates Ca2+ channel activity by shifting the extracellular surface potential to the positive direction, and vice versa.
Received: 23 January 2001/Revised: 23 June 2001 相似文献
10.
Caffeine-induced Release of Intracellular Ca2+ from Chinese Hamster Ovary Cells Expressing Skeletal Muscle Ryanodine Receptor : Effects on Full-Length and Carboxyl-Terminal Portion of Ca2+Release Channels
下载免费PDF全文

Manjunatha B. Bhat Jiying Zhao Weijin Zang C. William Balke Hiroshi Takeshima W. Gil Wier Jianjie Ma 《The Journal of general physiology》1997,110(6):749-762
The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation–contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the full length RyR channels in a concentration-dependent manner, but it had no effect on the carboxyl-terminal RyR channels. CHO cells expressing the carboxyl-terminal RyR proteins displayed spontaneous changes of intracellular [Ca2+]. Unlike the native RyR channels in muscle cells, which display localized Ca2+ release events (i.e., “Ca2+ sparks” in cardiac muscle and “local release events” in skeletal muscle), CHO cells expressing the full length RyR proteins did not exhibit detectable spontaneous or caffeine-induced local Ca2+ release events. Our data suggest that the binding site for caffeine is likely to reside within the amino-terminal portion of RyR, and the localized Ca2+ release events observed in muscle cells may involve gating of a group of Ca2+ release channels and/or interaction of RyR with muscle-specific proteins. 相似文献
11.
Gilchrist James S.C. Palahniuk Chris Bose Ratna 《Molecular and cellular biochemistry》1997,172(1-2):159-170
In this report we describe the application of spectroscopic methods to the study of Ca2+ release by isolated native sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle. To date, dual-wavelength spectroscopy of arsenazo III and antipyrylazo III difference absorbance have been the most common spectroscopic methods for the assay of SR Ca2+ transport. The utility of these methods is the ability to manipulate intraluminal Ca2+ loading of SR vesicles. These methods have also been useful for studying the effect of both agonists and antagonists upon SR Ca2+ release and Ca2+ uptake. In this study, we have developed the application of Calcium Green-2, a long-wavelength excitable fluorescent indicator, for the study of SR Ca2+ uptake and release. With this method we demonstrate how ryanodine receptor Ca2+ channel opening and closing is regulated in a complex manner by the relative distribution of Ca2+ between extraluminal and intraluminal Ca2+ compartments. Intraluminal Ca2+ is shown to be a key regulator of Ca2+ channel opening. However, these methods also reveal that the intraluminal Ca2+ threshold for Ca2+-induced Ca2+ release varies as a function of extraluminal Ca2+ concentration. The ability to study how the relative distribution of a finite pool of Ca2+ across the SR membrane influences Ca2+ uptake and Ca2+ release may be useful for understanding how the ryanodine receptor is regulated, in vivo. 相似文献
12.
Electrical stimulation of the rat heart sarcolemmal membranes with a square wave current was found to increase Ca2+-ATPase activity. This activation of the enzyme was dependent upon the voltage of the electric current, frequency of stimulation and duration of stimulation of the sarcolemmal membranes. The increase in ca2+-ATPase was reversible upon terminating the electrical stimulation. The activation of sarcolemmal Ca2+-ATPase due to electrical stimulation was markedly depressed when the reaction was carried out at high pH (7.8 to 8.2), low pH (6.6 to 7.0), high temperatures (45 to 50°C) and low temperatures (17 to 25°C) of the incubation medium. Ca2+-antagonists, verapamil and D-600, unlike other types of inhibitors such as propranolol and ouabain, were found to reduce the activation of sarcolemmal Ca2+-ATPase by electrical stimulation. These results support the view that Ca2+/Mg2+ ATPase may be involved in the gating mechanism for opening Ca2+-channels in the sarcolemmal membrane upon excitation of the cardiac muscle. 相似文献
13.
De Bock M Wang N Bol M Decrock E Ponsaerts R Bultynck G Dupont G Leybaert L 《The Journal of biological chemistry》2012,287(15):12250-12266
Many cellular functions are driven by changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that are highly organized in time and space. Ca(2+) oscillations are particularly important in this respect and are based on positive and negative [Ca(2+)](i) feedback on inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). Connexin hemichannels are Ca(2+)-permeable plasma membrane channels that are also controlled by [Ca(2+)](i). We aimed to investigate how hemichannels may contribute to Ca(2+) oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca(2+) oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides (32)Gap27/(43)Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca(2+). Alleviating the negative feedback of [Ca(2+)](i) on InsP(3)Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca(2+)](i) but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca(2+)](i) inhibition. Unlike interfering with the bell-shaped dependence of InsP(3)Rs to [Ca(2+)](i), CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca(2+) entry during the rising phase of the Ca(2+) spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations. 相似文献
14.
Bridget M Graves Thomas Simerly Chuanfu Li David L Williams Robert Wondergem 《Journal of biomedical science》2012,19(1):59
The phosphoinositide 3-kinases (PI3K/Akt) dependent signaling pathway plays an important role in cardiac function, specifically cardiac contractility. We have reported that sepsis decreases myocardial Akt activation, which correlates with cardiac dysfunction in sepsis. We also reported that preventing sepsis induced changes in myocardial Akt activation ameliorates cardiovascular dysfunction. In this study we investigated the role of PI3K/Akt on cardiomyocyte function by examining the role of PI3K/Akt-dependent signaling on [Ca2+]i, Ca2+ transients and membrane Ca2+ current, ICa, in cultured murine HL-1 cardiomyocytes. (1–20 μM), a specific PI3K inhibitor, dramatically decreased HL-1 [Ca2+]i, Ca2+ transients and ICa. We also examined the effect of PI3K isoform specific inhibitors, i.e. α (PI3-kinase α inhibitor 2; 2–8 nM); β (TGX-221; 100 nM) and γ (AS-252424; 100 nM), to determine the contribution of specific isoforms to HL-1 [Ca2+]i regulation. Pharmacologic inhibition of each of the individual PI3K isoforms significantly decreased [Ca2+]i, and inhibited Ca2+ transients. Triciribine (1–20 μM), which inhibits AKT downstream of the PI3K pathway, also inhibited [Ca2+]i, and Ca2+ transients and ICa. We conclude that the PI3K/Akt pathway is required for normal maintenance of [Ca2+]i in HL-1 cardiomyocytes. Thus, myocardial PI3K/Akt-PKB signaling sustains [Ca2+]i required for excitation-contraction coupling in cardiomyoctyes. LY294002相似文献
15.
O. DeIbono 《The Journal of membrane biology》1995,146(1):91-99
Ca2+ transients and the rate of Ca2+ release (dCaREL/dt) from the sarcoplasmic reticulum (SR) in voltage-clamped, fast-twitch skeletal muscle fibers from the rat were studied with the double Vaseline gap technique and using mag-fura-2 and fura-2 as Ca2+ indicators. Single pulse experiments with different returning potentials showed that Ca2+ removal from the myoplasm is voltage independent. Thus, the myoplasmic Ca2+ removal (dCaREM/dt) was studied by fitting the decaying phase of the Ca2+ transient (Melzer, Ríos & Schneider, 1986) and dCaREL/dt was calculated as the difference between dCa/dt and dCaREM/dt. The fast Ca2+ release decayed as a consequence of Ca2+ inactivation of Ca2+ release. Double pulse experiments showed inactivation of the fast Ca2+ release depending on the prepulse duration. At constant interpulse interval, long prepulses (200 msec) induced greater inactivation of the fast Ca2+ release than shorter depolarizations (20 msec). The correlation (r) between the myoplasmic [Ca2+]i and the inhibited amount of Ca2+ release was 0.98. The [Ca2+]i for 50% inactivation of dCaREL/dt was 0.25 m, and the minimum number of sites occupied by Ca2+ to inactivate the Ca2+ release channel was 3.0. These data support Ca2+ binding and inactivation of SR Ca2+ release.This work was supported by Grant-in-Aid from the American Heart Association (National) and Muscular Dystrophy Association (USA). Part of this work was developed in Dr. Stefani's laboratory at Baylor College of Medicine. 相似文献
16.
To determine the role of calcium and calmodulin in mouse oocyte maturation, we examined the distribution of intracellular calcium during mouse oocyte maturation by using Mira Cal Imaging System. The calcium was present homogeneously in oocytes with intact germinal vesicle (GV) and accumulated around the nuclear region after GV breakdown(GVBD). The high level of calcium disappeared 6 hours later after GVBD. In the presence of 50 mumol/L BAPTA/AM, we failed to observe this phenomena. All eggs treated with 20 mumol/L W7, an antagonist of calmodulin, 50 mumol/L BAPTA/AM, a calcium chelator, could not develop to metaphase II (MII), although GVBD was not affected. We also detected the activity of a cytoplasmic maturation-promoting factor (MPF). W7 and BAPTA/AM had no effects on the rise of MPF activity in the course of maturation. We suggest that compartment distribution of calcium around nuclear region plays an important role in mouse oocyte maturation. 相似文献
17.
Zhenhui Chen Brandy L. Akin Larry R. Jones 《The Journal of biological chemistry》2010,285(5):3253-3260
Phospholamban (PLB) inhibits the activity of SERCA2a, the Ca2+-ATPase in cardiac sarcoplasmic reticulum, by decreasing the apparent affinity of the enzyme for Ca2+. Recent cross-linking studies have suggested that PLB binding and Ca2+ binding to SERCA2a are mutually exclusive. PLB binds to the E2 conformation of the Ca2+-ATPase, preventing formation of E1, the conformation that binds two Ca2+ (at sites I and II) with high affinity and is required for ATP hydrolysis. Here we determined whether Ca2+ binding to site I, site II, or both sites is sufficient to dissociate PLB from the Ca2+ pump. Seven SERCA2a mutants with amino acid substitutions at Ca2+-binding site I (E770Q, T798A, and E907Q), site II (E309Q and N795A), or both sites (D799N and E309Q/E770Q) were made, and the effects of Ca2+ on N30C-PLB cross-linking to Lys328 of SERCA2a were measured. In agreement with earlier reports with the skeletal muscle Ca2+-ATPase, none of the SERCA2a mutants (except E907Q) hydrolyzed ATP in the presence of Ca2+; however, all were phosphorylatable by Pi to form E2P. Ca2+ inhibition of E2P formation was observed only in SERCA2a mutants retaining site I. In cross-linking assays, strong cross-linking between N30C-PLB and each Ca2+-ATPase mutant was observed in the absence of Ca2+. Importantly, however, micromolar Ca2+ inhibited PLB cross-linking only to mutants retaining a functional Ca2+-binding site I. The dynamic equilibrium between Ca2+ pumps and N30C-PLB was retained by all mutants, demonstrating normal regulation of cross-linking by ATP, thapsigargin, and anti-PLB antibody. From these results we conclude that site I is the key Ca2+-binding site regulating the physical association between PLB and SERCA2a. 相似文献
18.
Masgrau R Servitja JM Sarri E Young KW Nahorski SR Picatoste F 《Journal of neurochemistry》2000,74(2):818-826
Muscarinic receptor activation of phosphoinositide phospholipase C (PLC) has been examined in rat cerebellar granule cells under conditions that modify intracellular Ca2+ stores. Exposure of cells to medium devoid of Ca2+ for various times reduced carbachol stimulation of PLC with a substantial loss (88%) seen at 30 min. A progressive recovery of responses was observed following the reexposure of cells to Ca2+-containing medium (1.3 mM). However, these changes did not appear to result exclusively from changes in the cytosolic Ca2+ concentration ([Ca2+]i), which decreased to a lower steady level (approximately 25 nM decrease in 1-3 min after extracellular omission) and rapidly returned (within 1 min) to control values when extracellular Ca2+ was restored. Only after loading of the intracellular Ca2+ stores through a transient 1-min depolarization of cerebellar granule cells with 40 mM KCl, followed by washing in nondepolarizing buffer, was carbachol able to mobilize intracellular Ca2+. However, the same treatment resulted in an 80% enhancement of carbachol activation of PLC. In other experiments, partial depletion of the Ca2+ stores by pretreatment of cells with thapsigargin and caffeine resulted in an inhibition (18 and 52%, respectively) of the PLC response. Furthermore, chelation of cytosolic Ca2+ with BAPTA/AM did not influence muscarinic activation of PLC in either the control or predepolarized cells. These conditions, however, inhibited both the increase in [Ca2+]i and the PLC activation elicited by 40 mM KCl and abolished carbachol-induced intracellular Ca2+ release in predepolarized cells. Overall, these results suggest that muscarinic receptor activation of PLC in cerebellar granule cells can be modulated by changes in the loading state of the Ca2+ stores. 相似文献
19.
Li H Ding X Lopez JR Takeshima H Ma J Allen PD Eltit JM 《The Journal of biological chemistry》2010,285(50):39171-39179
In the absence of store depletion, plasmalemmal Ca(2+) permeability in resting muscle is very low, and its contribution in the maintenance of Ca(2+) homeostasis at rest has not been studied in detail. Junctophilin 1 knock-out myotubes (JP1 KO) have a severe reduction in store-operated Ca(2+) entry, presumably caused by physical alteration of the sarcoplasmic reticulum (SR) and T-tubule junction, leading to disruption of the SR signal sent by Stim1 to activate Orai1. Using JP1 KO myotubes as a model, we assessed the contribution of the Orai1-mediated Ca(2+) entry pathway on overall Ca(2+) homeostasis at rest with no store depletion. JP1 KO myotubes have decreased Ca(2+) entry, [Ca(2+)](rest), and intracellular Ca(2+) content compared with WT myotubes and unlike WT myotubes, are refractory to BTP2, a Ca(2+) entry blocker. JP1 KO myotubes show down-regulation of Orai1 and Stim1 proteins, suggesting that this pathway may be important in the control of resting Ca(2+) homeostasis. WT myotubes stably transduced with Orai1(E190Q) had similar alterations in their resting Ca(2+) homeostasis as JP1 KO myotubes and were also unresponsive to BTP2. JP1 KO cells show decreased expression of TRPC1 and -3 but overexpress TRPC4 and -6; on the other hand, the TRPC expression profile in Orai1(E190Q) myotubes was comparable with WT. These data suggest that an important fraction of resting plasmalemmal Ca(2+) permeability is mediated by the Orai1 pathway, which contributes to the control of [Ca(2+)](rest) and resting Ca(2+) stores and that this pathway is defective in JP1 KO myotubes. 相似文献
20.
Boyman L Hagen BM Giladi M Hiller R Lederer WJ Khananshvili D 《The Journal of biological chemistry》2011,286(33):28811-28820
The cardiac Na(+)/Ca(2+) exchanger (NCX) regulates cellular [Ca(2+)](i) and plays a central role in health and disease, but its molecular regulation is poorly understood. Here we report on how protons affect this electrogenic transporter by modulating two critically important NCX C(2) regulatory domains, Ca(2+) binding domain-1 (CBD1) and CBD2. The NCX transport rate in intact cardiac ventricular myocytes was measured as a membrane current, I(NCX), whereas [H(+)](i) was varied using an ammonium chloride "rebound" method at constant extracellular pH 7.4. At pH(i) = 7.2 and [Ca(2+)](i) < 120 nM, I(NCX) was less than 4% that of its maximally Ca(2+)-activated value. I(NCX) increases steeply at [Ca(2+)](i) between 130-150 nM with a Hill coefficient (n(H)) of 8.0 ± 0.7 and K(0.5) = 310 ± 5 nM. At pH(i) = 6.87, the threshold of Ca(2+)-dependent activation of I(NCX) was shifted to much higher [Ca(2+)](i) (600-700 nM), and the relationship was similarly steep (n(H) = 8.0±0.8) with K(0.5) = 1042 ± 15 nM. The V(max) of Ca(2+)-dependent activation of I(NCX) was not significantly altered by low pH(i). The Ca(2+) affinities for CBD1 (0.39 ± 0.06 μM) and CBD2 (K(d) = 18.4 ± 6 μM) were exquisitely sensitive to [H(+)], decreasing 1.3-2.3-fold as pH(i) decreased from 7.2 to 6.9. This work reveals for the first time that NCX can be switched off by physiologically relevant intracellular acidification and that this depends on the competitive binding of protons to its C(2) regulatory domains CBD1 and CBD2. 相似文献