共查询到20条相似文献,搜索用时 15 毫秒
1.
An N-ethylmaleimide-sensitive ATPase was purified 100-fold from chromaffin granule membranes. The purification procedure included solubilization with polyoxyethylene 9 lauryl ether, chromatography on hydroxylapatite and DEAE-cellulose columns, and glycerol gradient centrifugations. Inclusion of phosphatidylserine and a mixture of protease inhibitors during the purification procedure was necessary to maintain the activity of the preparation. The purified preparation contained four major polypeptides with molecular masses of about 115, 72, 57, and 39 kDa, which were copurified with the ATPase activity. The 115-kDa subunit binds [14C]dicyclohexylcarbodiimide and the subunits of 115 and 39 kDa bind [14C]N-ethylmaleimide. The ATP-dependent proton uptake activity of chromaffin granule membranes is inhibited 50% with about 20 microM N-ethylmaleimide, while over 5 mM concentrations of the inhibitor were required to block the ATPase activity of the membranes. The ATPase activity of the purified enzyme was inhibited via two different affinities: a high affinity site with a Ki in the microM range and a low affinity site in the mM range, each contributing to about 50% inhibition of the enzyme. It is concluded that the proton-ATPase of chromaffin granule membranes contains at least four subunits with the 115-kDa polypeptide being the main subunit having the active site for the ATPase activity of the enzyme. 相似文献
2.
The proton-ATPase of chromaffin granules was purified so as to maintain its proton-pumping activity when reconstituted into phospholipid vesicles. The purification procedure involved solubilization with polyoxyethylene 9 lauryl ether, hydroxylapatite column, precipitation by ammonium sulfate, and glycerol gradient centrifugation. The protease inhibitor mixture used in previous studies inhibited the proton-pumping activity of the enzyme; therefore, the protein was stabilized by pepstatin A and leupeptin. The enzyme was purified at least 50-fold with respect to both ATPase and proton-pumping activity. The ATP-dependent proton uptake activity of the reconstituted enzyme was absolutely dependent on the presence of Cl- or Br- outside the vesicles, whereas sulfate, acetate, formate, nitrate, and thiocyanate were inhibitory. Sulfate inhibition seems to be due to competition with Cl- on the anion-binding site outside the vesicles, whereas nitrate and thiocyanate inhibited only from the internal side. As with the inhibition by N-ethylmaleimide, the proton-pumping activity was much more sensitive to nitrate than the ATPase activity. About 20 mM nitrate were sufficient for 90% inhibition of the proton-pumping activity while 100 mM inhibited only 50% of the ATPase activity both in situ and in the reconstituted enzyme. The possible regulatory effect of anions on the ATP-dependent proton uptake in secretory granules is discussed. 相似文献
3.
Vanadate-sensitive ATPase (115 kDa molecular weight) in adrenal chromaffin granules is an intrinsic membrane enzyme with its catalytic site located at the outer surface of the granules. Upon incubation with [gamma-32P]ATP, the purified ATPase formed an alkaline-labile phosphoenzyme intermediate, which was inhibited by vanadate but not by Na+ or K+. Ratio of ATPase or phosphatase activity and formation of phosphoenzyme intermediate was constant during purification after the first glycerol density gradient centrifugation. Phosphatidylserine specifically activated the enzyme about three-fold by increasing the Vmax value without changing the Km for ATP. Other phospholipids, including phosphatidylglycerol, phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, as well as lysophospholipids and detergents, had no effect. These results indicated that the vanadate-sensitive ATPase belongs to the P-type ATPases, which differ from known cation-translocating P-type ATPases. 相似文献
4.
A putative processing enzyme for proenkephalin, with activity directed toward basic residues, was purified over 2000-fold from washed bovine adrenal medullary chromaffin granule membranes. The molecular mass of this membrane-bound adrenal trypsin-like enzyme (mATLE) is 31 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the enzyme is extremely basic, binding to carboxymethyl-Sephadex at pH 8.5. The pH optimum of mATLE using t-butoxycarbonyl-Glu-Lys-Lys-aminomethylcoumarin as a substrate is 8.5-8.7, and its Km value for this substrate is 2.2 mM. mATLE activity was inhibited by soybean trypsin inhibitor, lima bean trypsin inhibitor, and aprotinin but not by metal chelators or thiol-directed reagents. Sequencing of cleavage products released from Peptide B revealed that the enzyme preferentially cleaves between and following the paired basic residues at positions 23 and 24 of Peptide B (thus generating [Met-enkephalin]-Arg-Phe and Arg-[Met-enkephalin]-Arg-Phe). Dynorphin A was cleaved following a single lysine at position 11 but not at the paired arginine site. Our results suggest that mATLE is a trypsin-like serine protease with the specificity appropriate to that of a proenkephalin processing enzyme. 相似文献
5.
The influence of cytoskeletal elements on the chromaffin granule function was studied using a model system consisting of purified granule membranes and F-actin. The membrane ATPase was partially inactivated by incubation at 37 degrees C, and this inactivation was prevented by adding F-actin. The stabilizing action of F-actin on the ATPase was abolished by adding DNase I. Detergent-solubilized ATPase was more rapidly and profoundly inactivated, but was not stabilized by F-actin. The stabilization of ATPase by F-actin may be due to the cross-linking of granule membranes with F-actin and the native structure of the granule membrane may be required for preserving the stability of membrane ATPase. These findings thus suggest the possibility that the interaction of microfilaments with chromaffin granules may influence the function of chromaffin granules within the cell. 相似文献
6.
Calmodulin-binding proteins in chromaffin granule membrane and chromaffin cell plasma membranes have been investigated and compared. Chromaffin granules were purified by centrifugation over a 1.7 M sucrose layer. Plasma membranes were obtained in a highly purified form by differential and isopycnic centrifugation. Enzymatic determinations of 5'-nucleotidase, a generally accepted plasma membrane marker, showed a 40-50-fold enrichment as compared to the cell homogenate. Marker enzyme studies demonstrated only minimal contamination by other subcellular organelles. After solubilization with Triton X-100, calmodulin-binding proteins were isolated from chromaffin granule membranes and plasma membranes by affinity chromatography on a calmodulin/Sepharose 4B column. On two-dimensional polyacrylamide gelelectrophoresis a prominent protein (Mr = 65,000, pI ranging from 5.1 to 6) consisting of multiple spots, was present in the calmodulin-binding fraction from chromaffin granule membranes as well as from plasma membranes. Besides this 65 kDa protein both fractions had at least four groups of proteins in common. Also, proteins typical for either preparation were observed. In the calmodulin-binding protein preparations from chromaffin granule membranes a prominent spot with Mr = 80,000 and a pH ranging from 5.0 to 5.7 was present. This protein was enzymatically and immunologically identified as dopamine-beta-monooxygenase. 相似文献
7.
Divalent cations induce the aggregation of chromaffin granule ghosts (CG membranes) at millimolar concentrations. Monovalent cations produce the same effect at 100-fold higher concentrations. The kinetics of the dimerization phase were followed by light-scattering changes observed in stopped-flow rapid mixing experiments. The rate constant for Ca2+-induced dimerization (kapp) is 0.86-1.0 x 10(9) M-1sec-1, based on the "molar" vesicle concentration. This value is close to the values predicted by theory for the case of diffusion-controlled reaction (7.02 x 10(9) M-1sec-1), indicating that there is no energy barrier to dimerization. Arrhenius plots between 10 degrees and 42 degrees C support this; the activation energy observed, +4.4 Kcal, is close to the value (4.6-4.8 Kcal) predicted for diffusion control according to theory. Artificial vesicles prepared from CG lipids were also found to have cation-induced aggregation, but the rates (values of kapp) were less than 1/100 as large as those with native CG membranes. Also, significant differences were found with respect to cation specificity. It is concluded that the slow rates are due to the low probability that the segments of membrane which approach will be matched in polar head group composition and disposition. Thus large numbers of approaches are necessary before matched segments come into aposition. The salient features of the chromaffin granule membrane aggregation mechanism are as follows: (a) In the absence of cations capable of shielding and binding, the membranes are held apart by electrostatic repulsion of their negatively charged surfaces. (b) The divalent and monovalent cation effects on aggregation are due to their ability to shield these charges, allowing a closer approach of the membrane surfaces. (c) The major determinants of the aggregation rates of CG membranes are proteins which protrude from the (phospholipid) surface of the membrane and serve as points of primary contact. Transmembrane contact between these proteins does not require full neutralization of the surface charge and surface potential arising from the negatively charged phospholipids. (d) After contact between proteins is established, the interaction between membranes can be strengthened through transmembrane hydrogen bonding of phosphatidyl ethanolamine polar head groups, divalent cation-mediated salt bridging, and segregation of phosphatidylcholine out of the region of contact. 相似文献
9.
(1) Redox titrations of cytochrome b-561 have been performed with the purified cytochrome and with intact and detergent-solubilized chromaffin-granule membranes. (2) The midpoint redox potential of the cytochrome is 100–130 mV; this depends upon the composition of the buffer, but is independent of pH in the range 5.5–7.5; partial proteolysis of the cytochrome raises the midpoint potential to 160 mV. (3) The Nernst plots of titration data have slopes of 75–115 mV, and are in some cases sigmoid in shape. This may be explained by negative cooperativity during redox transitions in oligomeric cytochrome b-561. (4) Measurements of the haem and cytochrome content of chromaffin granule membrane suggest a haem content of 1 mol/mol protein. (5) Chemical crosslinking of cytochrome b-561 suggests that it may exist as an oligomer of 4–6 polypeptide chains within the chromaffin granule membrane. Aggregation of purified cytochrome b-561 was shown by gel filtration studies and by immunological methods in SDS-polyacrylamide gels. Studies of the molecular weight of the aggregates suggest that the monomer has a molecular weight close to 22 000, but migrates anomalously slowly during electrophoresis. 相似文献
10.
Chromaffin granules are involved in catecholamine synthesis and traffic in the adrenal glands. The transporting membrane proteins
of chromaffin granules play an important role in the ion homeostasis of these organelles. In this study, we characterized
components of the electrogenic 86Rb + flux observed in isolated chromaffin granules. In order to study single channel activity, chromaffin granules from the bovine
adrenal medulla were incorporated into planar lipid bilayers. Four types of cationic channel were found, each with a different
conductance. The unitary conductances of the potassium channels are 360 ± 10 pS, 220 ± 8 pS, 152 ± 8 pS and 13 ± 3 pS in a
gradient of 450/150 mM KCl, pH 7.0. A multiconductance potassium channel with a conductivity of 110 ± 8 pS and 31 ± 4 pS was
also found. With the exception of the 13 pS conductance channel, all are activated by depolarizing voltages. One type of chloride
channel was also found. It has a unitary conductance of about 250 pS in a gradient of 500/150 mM KCl, pH 7.0. 相似文献
12.
The purified proton ATPase of chromaffin granules contains five different polypeptides denoted as subunits I to V in the order of decreasing molecular weights of 115,000, 72,000, 57,000, 39,000, and 17,000, respectively. The purified enzyme was reconstituted as a highly active proton pump, and the binding of N-ethylmaleimide and nucleotides to individual subunits was studied. N-Ethylmaleimide binds to subunits I, II, and IV, but inhibition of both ATPase and proton pumping activity correlated with binding to subunit II. In the presence of ADP, the saturation curve of ATP changed from hyperbolic to a sigmoid shape, suggesting that the proton ATPase is an allosteric enzyme. Upon illumination of the purified enzyme in the presence of micromolar concentrations of 8-azido-ATP, alpha-[35S]ATP, or alpha-[32P]ATP subunits I, II, and IV were labeled. However, at concentrations of alpha-[32P]ATP below 0.1 microM, subunit II was exclusively labeled in both the purified and reconstituted enzyme. This labeling was absolutely dependent on the presence of divalent cations, like Mg2+ and Mn2+, while Ca2+, Co2+, and Zn2+ had little or no effect. About 0.2 mM Mg2+ was required to saturate the reaction even in the presence of 50 nM alpha-[32P]ATP, suggesting a specific and separate Mg2+ binding site on the enzyme. Nitrate, sulfate, and thiocyanate at 100 mM or N-ethylmaleimide and 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole at 100 microM prevented the binding of the nucleotide to subunit II. The labeling of this subunit was effectively prevented by micromolar concentrations of three phosphonucleotides including those that cannot serve as substrate for the enzyme. It is concluded that a tightly bound ADP on subunit II is necessary for the activity of the enzyme. 相似文献
13.
A K + channel was incorporated into voltage-clamped planar lipid bilayers from bovine chromaffin granules and resealed granule membranes (ghosts). It was not incorporated from plasma membrane-rich fractions from the adrenal medulla. The channel had a conductance of 400 pS in symmetric 450 mM KCI, with the permeability sequence K + > Rb + > Cs + > Na + > Li +, and was insensitive to both Ca 2+ and charybdotoxin. It exhibited complex gating kinetics, consistent with the presence of multiple open and closed states, and its gating was voltage-dependent. The channels appeared to incorporate into bilayers with the same orientation, and were blocked from one side (the side of vesicle addition) by 0.2-1 mM TEA'. The block was slightly voltage-dependent. Acidification of resealed granule membranes in response to external ATP (which activated the vacuolartype ATPase) was significantly reduced in the presence of 1 mM intralumenal TEACI (with 9 mM KCl), and parallel measurements with the potential-sensitive dye Oxonol V showed that such vesicles tended to develop higher internal-positive membrane potentials than control vesicles containing only 10 mM KCI. 1 mM TEA + had no effect on proton-pumping activity when applied externally, and did not directly affect either the proton-pumping or ATP hydrolytic activity of the partially-purified ATPase. These results suggest that chromaffin granule membranes contain a TEA +-sensitive K + channel which may have a role in regulating the vesicle membrane potential.
Correspondence to: R. H. Ashley 相似文献
14.
Bovine chromaffin granules were exposed to different isotonic non-ionic and ionic solutions (sucrose; Ca 2+ - and Mg 2+-free phosphate-buffered saline; ; Ca 2+- and Mg 2+-free phosphate-buffered ) at pH 7 and then frozen either in suspension or as firm pellets. Freezing was performed without prefixation or antifreeze treatments either by ‘standard’ techniques (approx. 1 mm 3 suspended or pelleted material on gold specimen supports dipped into liquid Freon) or with increased cooling rates by spraying suspensions into liquid propane (‘spray-freezing’). Regardless of the freezing method, membrane-intercalated particles were always randomly distributed when chromaffin granules were frozen in suspension. In contrast, forced physical contact between granules produced by centrifugation ( ) provoked dispersal of membrane-intercalated particles, but only in the presence of ions. Sucrose or EDTA in an ionic environment had no inhibitory effect. The following conclusions are derived: (1) Even below the reported phase transition region particle clustering is possible. (2) Chromaffin granule membranes are not liable to thermotropic segregation of membrane-intercalated particles. (3) Although the low freezing rates of ‘standard’ freezing techniques produce large-scale segregation artefacts (by which suspended chromaffin granules are pushed together within the segregated solute) this does not result in intramembraneous particle segregation. (4) Forced physical contact produces a Ca 2+-independent particle segregation, but only when repulsive electrostatic forces of membrane components are partially screened in an ionic environment. (5) This does not invalidate results obtained by others, showing Ca 2+-mediated chromaffin granule agglomeration and segregation of membrane-intercalated particles, but it might indicate the occurrence of another, not directly Ca 2+-dependent particle segregation mechanism in a prefusional stage of close membrane-to-membrane contact during exocytosis. 相似文献
16.
(1) The ATPase inhibitor protein has been isolated from rat liver mitochondria in purified form. The molecular weight determined by sodium dodecyl sulfate gel electrophoresis is approximately 9500, and the isoelectric point is 8.9. (2) The protein inhibits both the soluble ATPase and the particle-bound ATPase from rat liver mitochondria. It also inhibits ATPase activities of soluble F1, and inhibitor-depleted submitochondrial particles derived from bovine heart mitochondria. (3) On particle-bound ATPase the inhibitor has its maximal effect if incubated in the presence of Mg2+. ATP at slightly acidic pH. (4) The inhibitor has a minimal effect on Pi-ATP exchange activity in sonicated submitochondrial particles. However, unexpectedly the inhibitor greatly stimulates Pi-ATP exchange activity in whole mitochondria while the low ATPase activity of the mitochondria is not affected. The possible mechanism of action of the inhibitor on intact mitochondria is offered. 相似文献
17.
A sulfite-activated ATPase isolated from Sulfolobus solfataricus had a relative molecular mass of 370,000. It was composed of three subunits whose relative molecular masses were 63,000, 48,000, and 24,000. The enzyme was inhibited by the vacuolar ATPase inhibitors nitrate and N-ethylmaleimide; 4-chloro-7-nitrobenzofurazan (NBD-Cl) was also inhibitory. N-Ethylmaleimide was predominately bound to the largest subunit while NBD-Cl was bound to both subunits. ATPase activity was inhibited by low concentrations of p-chloromercuriphenyl sulfonate and the inhibition was reversed by cysteine which suggested that thiol groups were essential for activity. While the ATPase from S. solfataricus shared several properties with the ATPase from S. acidocaldarius there were significant differences. The latter enzyme was activated by sulfate and chloride and was unaffected by N-ethylmaleimide, whereas the S. solfataricus ATPase was inhibited by these anions as well as N-ethylmaleimide. These differences as well as differences that occur in other vacuolar-like ATPases isolated from the methanogenic and the extremely halophilic bacteria suggest the existence of several types of archaeal ATPases, none of which have been demonstrated to synthesize ATP. 相似文献
18.
5'-Nucleotidase activity was solubilized from a particulate fraction of rat renal homogenates by Sulphobetaine 14. An 11,430-fold purification was achieved by a two-step chromatographic procedure using concanavalin-A Sepharose and ADP-agarose. SDS-PAGE of the purified material revealed a single polypeptide band with a Mr of 69,000. The enyzme exhibited absolute specificity for 5'-mononucleotides. Among 7 tested substrates, adenosine monophosphate (AMP) showed the highest value of V/Km. The Km for 5'-AMP is 5.1 mumol/l and V is 632 mumol/min/mg. The plot of activity versus pH shows a broad plateau between pH 6.8 and 8.0. The hydrolysis of 5'-AMP was competitively inhibited by adenosine 5'-triphosphate (ATP; Ki = 1.2 mumol/l), adenosine 5'-diphosphate (ADP; Ki = 0.032 mumol/l) and alpha, beta-methyleneadenosine 5'-diphosphate (AOPCP; Ki = 0.005 mumol/l). All of the 5 detergents tested activated the enzyme. Sulphobetaine 14 was the most potent and resulted in a 4-fold stimulation by increasing V without change of Km. Addition of exogenous divalent cations was not required for activity. However, the enzyme was inhibited by EDTA. This inhibition was overcome by the addition of Co2+, Mn2+ and to a lesser extent of Mg2+. Hg2+, Zn2+, Cu2+ and Pb2+ inhibited in the low micromolar range. The properties of this enzyme from the rat kidney are similar to those reported in the literature for ecto 5'-nucleotidases from other sources. 相似文献
19.
A soft method of purification of cytochrome-561 from the membranes of chromaffin granules has been developed. It permits isolating a protein in its natural microsurroundings, i.e. a complex with lipids, provided that a buffer with high ionic force is used without a detergent. This method helps obtaining an electrophoretically homogeneous preparation as a high-molecular lipoprotein hexamer whose molecular weight is about 400 kDa. Basic physicochemical parameters of this preparation (subunit composition, content and composition of lipids, heme content, spectra of optical absorption of the oxidized and reduced forms) are determined. Possible presence of two forms of cytochrome b-561 in the chromaffin granules is discussed. 相似文献
20.
High-resolution proton NMR spectroscopy has been used to monitor the internal pH of chromaffin granule ghosts during Ca2+ influx through the membrane. For this purpose, ghosts were prepared by lysing and resealing chromaffin granules in a medium containing the disodium-ethylenediaminetetraacetic acid complex (Na2.EDTA). Uncomplexed EDTA and Ca.EDTA give rise to distinct sets of methylene peaks in the proton NMR spectrum. Free EDTA titrates with a pK near 6.6 in deuterated media; the chemical shifts that accompany titration have been used to monitor intravesicular pH changes which occur inside chromaffin granule ghosts as a result of ATPase activity and deprotonation of EDTA during Ca2+ influx and complex formation. ATPase activity results in an NMR-detectable proton gradient which is dissipated by nigericin. Experiments monitoring Ca2+ uptake showed that protons which are liberated inside ghosts as a result of Ca.EDTA complex formation are not extruded from the ghosts via a process coupled to Ca2+ entry. This suggests that the Ca2+ transport system of the chromaffin granule membrane occurs without concurrent proton antiport and is not directly coupled energetically to the transmembrane pH gradient. 相似文献
|