首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
STO-609, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) was synthesized, and its inhibitory properties were investigated both in vitro and in vivo. STO-609 inhibits the activities of recombinant CaM-KK alpha and CaM-KK beta isoforms, with K(i) values of 80 and 15 ng/ml, respectively, and also inhibits their autophosphorylation activities. Comparison of the inhibitory potency of the compound against various protein kinases revealed that STO-609 is highly selective for CaM-KK without any significant effect on the downstream CaM kinases (CaM-KI and -IV), and the IC(50) value of the compound against CaM-KII is approximately 10 microg/ml. STO-609 inhibits constitutively active CaM-KK alpha (glutathione S-transferase (GST)-CaM-KK-(84-434)) as well as the wild-type enzyme. Kinetic analysis indicates that the compound is a competitive inhibitor of ATP. In transfected HeLa cells, STO-609 suppresses the Ca(2+)-induced activation of CaM-KIV in a dose-dependent manner. In agreement with this observation, the inhibitor significantly reduces the endogenous activity of CaM-KK in SH-SY5Y neuroblastoma cells at a concentration of 1 microg/ml (approximately 80% inhibitory rate). Taken together, these results indicate that STO-609 is a selective and cell-permeable inhibitor of CaM-KK and that it may be a useful tool for evaluating the physiological significance of the CaM-KK-mediated pathway in vivo as well as in vitro.  相似文献   

2.
Mammalian Ca2+/CaM-dependent protein kinase kinase (CaM-KK) has been identified and cloned as an activator for two kinases, CaM kinase I (CaM-KI) and CaM kinase IV (CaM-KIV), and a recent report (Yano, S., Tokumitsu, H., and Soderling, T. R. (1998) Nature 396, 584-587) demonstrates that CaM-KK can also activate and phosphorylate protein kinase B (PKB). In this study, we identify a CaM-KK from Caenorhabditis elegans, and comparison of its sequence with the mammalian CaM-KK alpha and beta shows a unique Arg-Pro (RP)-rich insert in their catalytic domains relative to other protein kinases. Deletion of the RP-domain resulted in complete loss of CaM-KIV activation activity and physical interaction of CaM-KK with glutathione S-transferase-CaM-KIV (T196A). However, CaM-KK autophosphorylation and phosphorylation of a synthetic peptide substrate were normal in the RP-domain mutant. Site-directed mutagenesis of three conserved Arg in the RP- domain of CaM-KK confirmed that these positive charges are important for CaM-KIV activation. The RP- domain deletion mutant also failed to fully activate and phosphorylate CaM-KI, but this mutant was indistinguishable from wild-type CaM-KK for the phosphorylation and activation of PKB. These results indicate that the RP-domain in CaM-KK is critical for recognition of downstream CaM-kinases but not for its catalytic activity (i.e. autophosphorylation) and PKB activation.  相似文献   

3.
Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KK) is a novel member of the CaM kinase family, which specifically phosphorylates and activates CaM kinase I and IV. In this study, we characterized the CaM-binding peptide of alphaCaM-KK (residues 438-463), which suppressed the activity of constitutively active CaM-KK (84-434) in the absence of Ca(2+)/CaM but competitively with ATP. Truncation and site-directed mutagenesis of the CaM-binding region in CaM-KK reveal that Ile(441) is essential for autoinhibition of CaM-KK. Furthermore, CaM-KK chimera mutants containing the CaM-binding sequence of either myosin light chain kinases or CaM kinase II located C-terminal of Leu(440), exhibited enhanced Ca(2+)/CaM-independent activity (60% of total activity). Although the CaM-binding domains of myosin light chain kinases and CaM kinase II bind to the N- and C-terminal domains of CaM in the opposite orientation to CaM-KK (Osawa, M., Tokumitsu, H., Swindells, M. B., Kurihara, H., Orita, M., Shibanuma, T., Furuya, T., and Ikura, M. (1999) Nat. Struct. Biol. 6, 819-824), the chimeric CaM-KKs containing Ile(441) remained Ca(2+)/CaM-dependent. This result demonstrates that the orientation of the CaM binding is not critical for relief of CaM-KK autoinhibition. However, the requirement of Ile(441) for autoinhibition, which is located at the -3 position from the N-terminal anchoring residue (Trp(444)) to CaM, accounts for the opposite orientation of CaM binding of CaM-KK compared with other CaM kinases.  相似文献   

4.
In this report, we cloned a novel calmodulin-kinase (CaM-KIδ) from HeLa cells and characterized its activation mechanism. CaM-KIδ exhibits Ca2+/CaM-dependent activity that is enhanced (30-fold) in vitro by phosphorylation of its Thr180 by CaM-K kinase (CaM-KK), consistent with detection of CaM-KIδ-activating activity in HeLa cells. We also identified a novel CaM-KKβ isoform (CaM-KKβ-3) in HeLa cells whose activity was highly Ca2+/CaM-independent. Transiently expressed CaM-KIδ exhibited enhanced protein kinase activity in HeLa cells without ionomycin stimulation. This sustained activation of CaM-KIδ was completely abolished by Thr180Ala mutation and inhibited by CaM-KK inhibitor, STO-609, indicating a functional CaM-KK/CaM-KIδ cascade in HeLa cells.  相似文献   

5.
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin 3 (IL-3) and interleukin 5 (IL-5) are composed of two distinct subunits, alpha and beta c. The alpha subunits are specific for each cytokine, whereas the beta subunit (beta c) is shared by the three receptors and is an essential component of signal transduction. We have made a series of mutant beta c cDNAs that delete various regions of the cytoplasmic domain and examined the function of these mutants by coexpressing them with the alpha subunit of the human GM-CSF receptor (hGMR) in an IL-3-dependent mouse pro-B cell line BaF3. Two domains in the membrane-proximal portion of beta c were found to be important for transducing the hGM-CSF-mediated growth signals: one domain between Arg456 and Phe487 appears to be essential for proliferation, and the second domain between Val518 and Asp544 enhances the response to GM-CSF, but is not absolutely required for proliferation. The region between Val518 and Leu626 was responsible for major tyrosine phosphorylation of 95 and 60 kDa proteins. Thus, beta c-mediated major tyrosine phosphorylation of these proteins was apparently separated from proliferation. However, the beta 517 mutant lacking residues downstream of Val518 transmitted a herbimycin-sensitive proliferation signal, suggesting that beta 517 still activates a tyrosine kinase(s). We also evaluated the role of the cytoplasmic domain of the GMR alpha subunit and the results suggest that it is involved in the hGM-CSF-mediated signal transduction, but is not essential.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The internal residue Phe 25 in Rhodobacter sphaeroides thioredoxin was changed to five amino acids (Ala, Val, Leu, Ile, Tyr) by site-directed mutagenesis, and the mutant proteins were characterized in vitro and in vivo using the mutant trxA genes in an Escherichia coli TrxA- background. The substitution F25A severely impaired the functional properties of the enzyme. Strains expressing all other mutations can grow on methionine sulfoxide with growth efficiencies of 45-60% that of the wild type at 37 degrees, and essentially identical at 42 degrees. At both temperatures, however, strains harboring the substitutions F25V and F25Y had lower growth rates and formed smaller colonies. In another in vivo assay, only the wild type and the F25I substitution allowed growth of phage T3/7 at 37 degrees, demonstrating that subtle modifications of the protein interior at position 25 Ile/Leu or Phe/Tyr) can produce significant biological effects. All F25 mutants were good substrates for E. coli thioredoxin reductase. Although turnover rates and apparent Km values were significantly lower for all mutants compared to the wild type, catalytic efficiency of thioredoxin reductase was similar for all substrates. Determination of the free energy of unfolding showed that the aliphatic substitutions (Val, Leu, Ile) significantly destabilized the protein, whereas the F25Y substitution did not affect protein stability. Thus, thermodynamic stability of R. sphaeroides thioredoxin variants is not correlated with the distinct functional effects observed both in vivo and in vitro.  相似文献   

7.
The AMP-activated protein kinase (AMPK) is a critical regulator of energy balance at both the cellular and whole-body levels. Two upstream kinases have been reported to activate AMPK in cell-free assays, i.e., the tumor suppressor LKB1 and calmodulin-dependent protein kinase kinase. However, evidence that this is physiologically relevant currently only exists for LKB1. We now report that there is a significant basal activity and phosphorylation of AMPK in LKB1-deficient cells that can be stimulated by Ca2+ ionophores, and studies using the CaMKK inhibitor STO-609 and isoform-specific siRNAs show that CaMKKbeta is required for this effect. CaMKKbeta also activates AMPK much more rapidly than CaMKKalpha in cell-free assays. K(+)-induced depolarization in rat cerebrocortical slices, which increases intracellular Ca2+ without disturbing cellular adenine nucleotide levels, activates AMPK, and this is blocked by STO-609. Our results suggest a potential Ca(2+)-dependent neuroprotective pathway involving phosphorylation and activation of AMPK by CaMKKbeta.  相似文献   

8.
H Tokumitsu  M Iwabu  Y Ishikawa  R Kobayashi 《Biochemistry》2001,40(46):13925-13932
We have previously demonstrated that the alpha isoform of Ca(2+)/calmodulin-dependent protein kinase kinase (CaM-KKalpha) is strictly regulated by an autoinhibitory mechanism and activated by the binding of Ca(2+)/CaM [Tokumitsu, H., Muramatsu, M., Ikura, M., and Kobayashi, R. (2000) J. Biol. Chem. 275, 20090-20095]. In this study, we find that rat brain extract contains Ca(2+)/CaM-independent CaM-KK activity. This result is consistent with an enhanced Ca(2+)/CaM-independent activity (60-70% of total activity) observed with the recombinant CaM-KKbeta isoform. By using various truncation mutants of CaM-KKbeta, we have identified a region of 23 amino acids (residues 129-151) located at the N-terminus of the catalytic domain as an important regulatory element of the autonomous activity. A CaM-KKbeta deletion mutant of this domain shows a significant increase of Ca(2+)/CaM dependency for the CaM-KK activity as well as for the autophosphorylation activity. The activities of CaM-KKalpha and CaM-KKbeta chimera, in which autoinhibitory sequences were replaced by each other, were completely dependent on Ca(2+)/CaM, suggesting that the autoinhibitory regions of CaM-KKalpha and CaM-KKbeta are functional. These results establish for the first time that residues 129-151 of CaM-KKbeta participate in the release of the autoinhibitory domain from its catalytic core, resulting in generation of autonomous activity.  相似文献   

9.
The protein kinase C (PKC) isoforms are maintained in an inactive and closed conformation by intramolecular interactions. Upon activation these are disrupted by activators, binding proteins and cellular membrane. We have seen that autophosphorylation of two sites in the C-terminal V5 domain is crucial to keep PKC alpha insensitive to the activator diacylglycerol, which presumably is caused by a masking of the diacylglycerol-binding C1a domain. Here we demonstrate that the diacylglycerol sensitivity of the PKC beta isoforms also is suppressed by autophosphorylation of the V5 sites. To analyze conformational differences, a fusion protein ECFP-PKC alpha-EYFP was expressed in cells and the FRET signal was analyzed. The analogous mutant with autophosphorylation sites exchanged for alanine gave rise to a substantially lower FRET signal than wild-type PKC alpha indicating a conformational difference elicited by the mutations. Expression of the isolated PKC alpha V5 domain led to increased diacylglycerol sensitivity of PKC alpha. We identified acidic residues in the V5 domain that, when mutated to alanines or lysines, rendered PKC alpha sensitive to diacylglycerol. Furthermore, mutation to glutamate of four lysines in a lysine-rich cluster in the C2 domain gave a similar effect. Simultaneous reversal of the charges of the acidic residues in the V5 and the lysines in the C2 domain gave rise to a PKC alpha that was insensitive to diacylglycerol. We propose that these structures participate in an intramolecular interaction that maintains PKC alpha in a closed conformation. The disruption of this interaction leads to an unmasking of the C1a domain and thereby increased diacylglycerol sensitivity of PKC alpha.  相似文献   

10.
The major isoform of the gamma-aminobutyric acid type A (GABA(A)) receptor is thought to be composed of 2alpha(1), 2beta(2), and 1gamma(2) subunit(s), which surround the ion pore. Definite evidence for the subunit arrangement is lacking. We show here that GABA(A) receptor subunits can be concatenated to a trimer that can be functionally expressed upon combination with a dimer. Many combinations did not result in the functional expression. In contrast, four different combinations of triple subunits with dual subunit constructs, all resulting in the identical pentameric receptor gamma(2)beta(2)alpha(1)beta(2)alpha(1), could be successfully expressed in Xenopus oocytes. We characterized the functional properties of these receptors in respect to agonist, competitive antagonist, and diazepam sensitivity. All properties were similar to those of wild type alpha(1)beta(2)gamma(2) GABA(A) receptors. Thus, together with information on the crystal structure of the homologous acetylcholine-binding protein (Brejc, K., van Dijk, W. J., Klaassen, R. V., Schuurmans, M., van Der Oost, J., Smit, A. B., and Sixma, T. K., (2001) Nature 411, 269-276, we provide evidence for an arrangement gamma(2)beta(2)alpha(1)beta(2)alpha(1), counterclockwise when viewed from the synaptic cleft. Forced subunit assembly will also allow receptors containing different subunit isoforms or mutant subunits to be expressed, each in a desired position. The methods established here should be applicable to the entire ion channel family comprising nicotinic acetylcholine, glycine, and 5HT(3) receptors.  相似文献   

11.
Elevated intracellular Ca(2+) triggers numerous signaling pathways including protein kinases such as the calmodulin-dependent kinases (CaMKs) and the extracellular signal-regulated kinases (ERKs). In the present study we examined Ca(2+)-dependent "cross-talk" between these two protein kinase families. Using a combination of pharmacological inhibitors and dominant-negative kinases (dnKinase), we identified a requirement for CaMKK acting through CaMKI in the stimulation of ERKs upon depolarization of the neuroblastoma cell line, NG108. Depolarization stimulated prolonged ERK and JNK activation that was blocked by the CaMKK inhibitor, STO-609; this inhibition of ERK activation by STO-609 was rescued by expression of a STO-609-insensitive mutant of CaMKK. However, activation of ERK by epidermal growth factor or carbachol were not suppressed by inhibition of CaMKK, indicating specificity for this "cross-talk." To identify the downstream target of CaMKK that mediated ERK activation upon depolarization, dnKinases were expressed. The dnCaMKI completely suppressed ERK2 activation whereas dnAKT/PKB or nuclear-targeted dnCaMKIV, other substrates for CaMKK, were not inhibitory. ERK activation upon depolarization or transfection with constitutively active (ca) CaMKI was blocked by dnRas. Additionally, depolarization of NG108 cells promoted neurite outgrowth, and this effect was blocked by inhibition of either CaMKK (STO-609) or ERK (UO126). Co-transfection with caCaMKK plus caCaMKI also stimulated neurite outgrowth that was blocked by inhibition of ERK (UO126). These data are the first to suggest that ERK activation and neurite outgrowth in response to depolarization are mediated by CaMKK activation of CaMKI.  相似文献   

12.
Tyk2 is a Jak family member involved in cytokine signaling through heterodimeric-type receptors. Here, we analyzed the impact of the Val(678)-to-Phe substitution on Tyk2 functioning. This mutation is homologous to the Jak2 Val(617)-to-Phe mutation, implicated in myeloproliferative disorders. We studied ligand-independent and ligand-dependent Jak/Stat signaling in cells expressing Tyk2 V678F. Moreover, the effect of Tyk2 V678F was monitored in the context of the native heterodimeric interferon alpha receptor and in the context of a homodimeric receptor chimera, EpoR/R1, containing the ectodomain of the erythropoietin receptor. We show that Tyk2 V678F has increased catalytic potential in vivo and in vitro and more so when it is anchored to the homodimeric receptor. Tyk2 V678F leads to constitutive Stat3 phosphorylation but has no notable effect on the canonical interferon alpha-induced signaling. However, if anchored to the homodimeric EpoR/R1, the mutant confers to the cell increased sensitivity to erythropoietin. Thus, despite the catalytic gain of function of Tyk2 V678F, the effect on ligand-induced signaling is manifest only when two mutant enzymes are juxtaposed via the homodimeric receptor.  相似文献   

13.
14.
The muscle isoform of carnitine palmitoyltransferase I (M-CPTI) is 30- to 100-fold more sensitive to malonyl CoA inhibition than the liver isoform (L-CPTI). We have previously shown that deletion of the first 28 N-terminal amino acid residues in M-CPTI abolished malonyl CoA inhibition and high-affinity binding [Biochemistry 39 (2000) 712-717]. To determine the role of specific residues within the first 28 N-terminal amino acids of human heart M-CPTI on malonyl CoA sensitivity and binding, we constructed a series of substitution mutations and a mutant M-CPTI composed of deletion 18 combined with substitution mutations V19A, L23A, and S24A. All mutants had CPT activity similar to that of the wild type. A change of Glu3 to Ala resulted in a 60-fold decrease in malonyl CoA sensitivity and loss of high-affinity malonyl CoA binding. A change of His5 to Ala in M-CPTI resulted in only a 2-fold decrease in malonyl CoA sensitivity and a significant loss in the low- but not high-affinity malonyl CoA binding. Deletion of the first 18 N-terminal residues combined with substitution mutations V19A, L23A, and S24A resulted in a mutant M-CPTI with an over 140-fold decrease in malonyl CoA sensitivity and a significant loss in both high- and low-affinity malonyl CoA binding. This was further confirmed by a combined four-residue substitution of Glu3, Val19, Leu23, and Ser24 with alanine. Our site-directed mutagenesis studies demonstrate that Glu3, Val19, Leu23, and Ser24 in M-CPTI are important for malonyl CoA inhibition and binding, but not for catalysis.  相似文献   

15.
The crystal structures of three mutant hemoglobins reconstituted from recombinant beta chains and authentic human alpha chains have been determined in the deoxy state at 1.8-A resolution. The primary structures of the mutant hemoglobins differ at the beta-chain amino terminus. One mutant, beta Met, is characterized by the addition of a methionine at the amino terminus. The other two hemoglobins are characterized by substitution of Val 1 beta with either a methionine, beta V1M, or an alanine, beta V1A. All the mutation-induced structural perturbations are small intrasubunit changes that are localized to the immediate vicinity of the beta-chain amino terminus. In the beta Met and beta V1A mutants, the mobility of the beta-chain amino terminus increases and the electron density of an associated inorganic anion is decreased. In contrast, the beta-chain amino terminus of the beta V1M mutant becomes less mobile, and the inorganic anion binds with increased affinity. These structural differences can be correlated with functional data for the mutant hemoglobins [Doyle, M. L., Lew, G., DeYoung, A., Kwiatkowski, L., Noble, R. W., & Ackers, G. K. (1992) Biochemistry preceding paper is this issue] as well as with the properties of ruminant hemoglobins and a mechanism [Perutz, M., & Imai, K. (1980) J. Mol. Biol. 136, 183-191] that relates the intrasubunit interactions of the beta-chain amino terminus to changes in oxygen affinity. Since the structures of the mutant deoxyhemoglobins show only subtle differences from the structure of deoxyhemoglobin A, it is concluded that any of the three hemoglobins could probably function as a surrogate for hemoglobin A.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Adenylate kinase has two distinct binding sites for nucleotide substrates, MgATP and AMP. To identify the location of the site that specifically interacts with the adenine ring of AMP, we have substituted Ala, Gly, Val, Gln, and Trp for Leu66 of the recombinant chicken muscle enzyme by site-directed mutagenesis. All the purified Leu66 mutant enzymes exhibited an essentially identical circular dichroism spectrum and had thermal stabilities similar to the wild-type enzyme. Steady state kinetic analysis showed that the Leu66 mutant enzymes have significantly decreased Vmax values and markedly large Km values only for AMP. These results show that the binding site for the adenine ring of AMP in adenylate kinase is presumably located close to Leu66, which is invariant in all the enzymes so far sequenced. Significant inhibition of activities of the mutant enzymes and quenching of the Trp66 fluorescence by substrates suggest that in some Leu66 mutant enzymes, MgATP also binds to the AMP-binding site. Thus, Leu66 of adenylate kinase might play a role in the asymmetric recognition of the adenine ring of AMP from that of MgATP. Furthermore, the hydrophobicity of the residue at position 66 appears to be important for the positive cooperativity of substrate binding.  相似文献   

17.
The AMP-activated protein kinase (AMPK) is an important regulator of cellular metabolism in response to metabolic stress and to other regulatory signals. AMPK activity is absolutely dependent upon phosphorylation of AMPKalphaThr-172 in its activation loop by one or more AMPK kinases (AMPKKs). The tumor suppressor kinase, LKB1, is a major AMPKK present in a variety of tissues and cells, but several lines of evidence point to the existence of other AMPKKs. We have employed three cell lines deficient in LKB1 to study AMPK regulation and phosphorylation, HeLa, A549, and murine embryo fibroblasts derived from LKB(-/-) mice. In HeLa and A549 cells, mannitol, 2-deoxyglucose, and ionomycin, but not 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR), treatment activates AMPK by alphaThr-172 phosphorylation. These responses, as well as the downstream effects of AMPK on the phosphorylation of acetyl-CoA carboxylase, are largely inhibited by the Ca(2+)/ calmodulin-dependent protein kinase kinase (CaMKK) inhibitor, STO-609. AMPKK activity in HeLa cell lysates measured in vitro is totally inhibited by STO-609 with an IC50 comparable with that of the known CaMKK isoforms, CaMKKalpha and CaMKKbeta. Furthermore, 2-deoxyglucose- and ionomycin-stimulated AMPK activity, alphaThr-172 phosphorylation, and acetyl-CoA carboxylase phosphorylation are substantially reduced in HeLa cells transfected with small interfering RNAs specific for CaMKKalpha and CaMKKbeta. Lastly, the activation of AMPK in response to ionomycin and 2-deoxyglucose is not impaired in LKB1(-/-) murine embryo fibroblasts. These data indicate that the CaMKKs function in intact cells as AMPKKs, predicting wider roles for these kinases in regulating AMPK activity in vivo.  相似文献   

18.
19.
Two distinct isoforms of a Type II calcium/calmodulin-dependent protein kinase were separated from high-speed supernates (cytosol) of rat neonatal [postnatal day 10 (P10)] and adult [postnatal day 40 (P40)] cerebellum using cation-exchange chromatography. The isoenzymes contained variable amounts of three subunits of apparent Mr's of 50 kDa (alpha), 58 kDa (beta'), and 60 kDa (beta). The specific activity of calmodulin-dependent kinase (CaM kinase II) in crude homogenates increased sixfold between P10 and P40 using exogenous MAP 2 as substrate. Cytosol from cerebellum at P40 contained a predominant isoform (approximately 40% of total cytosolic activity) with a 1:5 molar ratio of alpha:beta',beta subunits that eluted with 150 mM NaCl (designated 150) and a less abundant isoform (approximately 20% of total cytosolic activity) containing a 1:8 molar ratio of alpha:beta',beta subunits that eluted with 350 mM NaCl (designated 350). In neonatal cerebellum at P10, the relative abundance of the two isoforms was reversed such that approximately 50% of the cytosolic calmodulin-dependent kinase activity was recovered in the 350 isoform, whereas only 20% of the total cytosolic kinase activity was recovered in the 150 isoform. Previous studies indicate that cerebellar granule cells may contain an all beta',beta isoform of CaM kinase II that lacks alpha subunit. Thus, to assess the cell-specific localization of kinase isoforms within cerebellum, cytosol prepared from primary cultures of rat cerebellar granule cells was applied to cation-exchange chromatography and analyzed for calmodulin-dependent kinase activity. The cells contained both isoforms of the kinase that were present in fresh tissue suggesting that granule cell-enriched cultures express all three kinase subunits. The data demonstrate that rat cerebellum contains unique mixtures of CaM kinase II isoenzymes and that their expression is developmentally regulated.  相似文献   

20.
Specific isoforms of the cAMP-dependent protein kinase are preferentially expressed within discrete neuronal regions in mouse brain (Cadd and McKnight (1989) Neuron 3, 71-79) suggesting that these subunits might have different functional properties. We have used recombinant techniques to express and purify the type I regulatory subunits, RI alpha and RI beta, the catalytic subunits C alpha and C beta, and then reconstituted holoenzymes with the various combinations of R and C subunits. The ability of the subunits to form inactive holoenzymes and then to be activated in the presence of cyclic nucleotides was examined. Holoenzymes containing C beta had essentially the same activation properties exhibited by C alpha holoenzymes. However, the presence of the neural form of RI, RI beta, led to formation of a holoenzyme which was activated at a 3-7-fold lower concentration of cyclic nucleotides compared to holoenzymes containing RI alpha. Expression of the RI beta protein in discrete regions of the central nervous system may provide a mechanism for increasing the sensitivity of the kinase to what would otherwise be subthreshold levels of stimulation. Two mutant forms of RI beta were constructed that converted the RI beta sequence to that of RI alpha at position 98 (RI beta Ala) or positions 98 and 99 (RI beta Ala/Ile). These sequences form part of a pseudosubstrate site thought to interact with the C subunit. Wild type and mutant R subunits were combined in vitro with purified bovine C subunits and half maximal activation constants (Ka) were determined with cyclic nucleotides. Holoenzymes containing RI beta Ala and RI beta Ala/Ile gave Ka values which were higher than wild type RI beta, with the double mutant shifting toward the Ka value of RI alpha holoenzymes by about 30%. These results suggest that amino acid differences in the pseudosubstrate site may account for some, but not all, of the increased sensitivity to cyclic nucleotides exhibited by RI beta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号