首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 436 毫秒
1.
The inability of many higher eukaryotes to convert 5-fluorocytosine to cytotoxic 5-fluorouracil presents the possibility of using the bacterial cytosine deaminase codA gene for negative selection. In transformed plant callus, expression of codA results in cell death on 5-fluorocytosine. In transgenic tobacco and Lotus japonicus plants the substrate-dependent negative marker segregates as a single dominant gene, and on 5-fluorocytosine CodA+ seedlings stop growing at the early seedling stage. Positive selection of CodA+ tobacco on the pyrimidine biosynthetic inhibitor N -(phosphonacetyl)- l -aspartate was obtained, by pyrimidine salvage from external cytosine. Activity of cytosine deaminase was determined by conversion of labelled cytosine to uracil followed by separation in thin layer chromatography. The codA marker therefore provides substrate-dependent negative and positive selection, together with cytosine deaminase reporter activity.  相似文献   

2.
Cytosine deaminase (CD), produced by prokaryotes but not by higher eukaryotes including plants, deaminates cytosine to uracil. The enzyme likewise converts 5-fluorocytosine (5FC), which by itself is not toxic, to 5-fluorouracil (5FU), which is toxic. The Escherichia coli codA-coding sequence encoding CD, together with appropriate regulatory elements, was introduced into Arabidopsis. Neither untransformed controls, nor transgenic plants expressing no CD mRNA, were sensitive to 5FC. Conversely, for most transgenic plants expressing CD mRNA, in the presence of 5FC calli and seedlings failed to proliferate, and seeds failed to germinate. A few transgenic plants with many codA copies expressed less CD mRNA and remained insensitive to 5FC, which likely reflected epigenetic repeat-induced gene silencing. Thus 5FC, presumably through conversion by the enzyme to 5FU, can be used to select against plants that express CD.  相似文献   

3.
4.
Transgenic tobacco plants were produced that contained single-copy pART54 T-DNA, with a 35S-uidA gene linked to loxP-flanked kanamycin resistance (nptII) and cytosine deaminase (codA) genes. Retransformation of these plants with pCre1 (containing 35S transcribed cre recombinase and hygromycin (hpt) resistance genes) resulted in excision of the loxP-flanked genes from the genome. Phenotypes of progeny from selfed-retransformed plants confirmed nptII and codA excision and integration of the cre-linked hpt gene. To avoid integration of the hpt gene, and thereby generate plants totally free of marker genes, we attempted to transiently express the cre recombinase. Agrobacterium tumefaciens (pCre1) was cocultivated with leaf discs of two pART54-transformed lines and shoots were regenerated in the absence of hygromycin selection. Nineteen of 773 (0.25%) shoots showed tolerance to 5-fluorocytosine (5-fc) which is converted to the toxic 5-fluorouracil by cytosine deaminase. 5-fc tolerance in six shoots was found to be due to excision of the loxP-flanked region of the pART54 T-DNA. In four of these shoots excision could be attributed to cre expression from integrated pCre1 T-DNA, whereas in two shoots excision appeared to be a consequence of transient cre expression from pCre1 T-DNA molecules which had been transferred to the plant cells but not integrated into the genome. The absence of selectable marker genes was confirmed by the phenotype of the T1 progeny. Therefore, through transient cre expression, marker-free transgenic plants were produced without sexual crossing. This approach could be applicable to the elimination of marker genes from transgenic crops which must be vegetatively propagated to maintain their elite genotype.  相似文献   

5.
The usefulness of the E. coli codA gene encoding cytosine deaminase as a conditional toxic gene was explored during various stages of plant development and in different Agrobacterium -mediated transformation protocols. To this end, several independent tobacco lines transgenic for codA were isolated and these were tested for their sensitivity to 5-fluorocytosine (5-FC) at different developmental stages. On media supplemented with 5-FC, seedling proliferation was inhibited. Leaves failed completely to regenerate sprouts on 5-FC-containing medium. However, 40% of the shoots regenerated on non-selective medium still formed roots on rooting medium with 5-FC. In all these assays, control plants were unaffected by up to 1 mg m1−1 5-FC. Transformation of a codA and nptll -harbouring T-DNA to tobacco leaf discs did not result in any regenerant using a combined 5-FC and kanamycin selection, indicating that codA does not behave as a cell-autonomous marker here. Nevertheless, transformation of the same T-DNA to tobacco protoplasts resulted in some enrichment of codA nptll + calluses using the proper combination of 5-FC and kanamycin for selection. Mixing of codA -containing and codA -lacking tobacco protoplasts revealed that the codA gene may behave as a cell autonomous marker under certain, appropriately chosen conditions, which seems to be in paradox with the total absence of escapes in tissue explant transformation. In all these experiments, 250 µg ml−1 5-FC was found to be the most optimal for selection. Our results suggest that codA can be successfully used as a negative selectable marker in Agrobacterium -mediated gene targeting protocols of tobacco whereby selection at the shoot regeneration level is the most effective.  相似文献   

6.
Prodrug gene therapy (PGT) is a treatment strategy in which tumor cells are transfected with a ‘suicide’ gene that encodes a metabolic enzyme capable of converting a nontoxic prodrug into a potent cytotoxin. One of the most promising PGT enzymes is cytosine deaminase (CD), a microbial salvage enzyme that converts cytosine to uracil. CD also converts 5-fluorocytosine (5FC) to 5-fluorouracil, an inhibitor of DNA synthesis and RNA function. Over 150 studies of CD-mediated PGT applications have been reported since 2000, all using wild-type enzymes. However, various forms of CD are limited by inefficient turnover of 5FC and/or limited thermostability. In a previous study, we stabilized and extended the half-life of yeast CD (yCD) by repacking of its hydrophobic core at several positions distant from the active site. Here we report that random mutagenesis of residues selected based on alignment with similar enzymes, followed by selection for enhanced sensitization to 5FC, also produces an enzyme variant (yCD-D92E) with elevated Tm values and increased activity half-life. The new mutation is located at the enzyme's dimer interface, indicating that independent mutational pathways can lead to an increase in stability, as well as a more subtle effect on enzyme kinetics. Each independently derived set of mutations significantly improves the enzyme's performance in PGT assays both in cell culture and in animal models.  相似文献   

7.
Genetic characterization of a signal transduction pathway requires the isolation of mutations in the pathway. Characterization of these mutated genes and their loci enumerates the components of the pathway and leads to an understanding of the role of each gene locus in the pathway under study. We have designed and developed a strategy based on resistance to the chemical flucytosine for the identification of mutations in a given pathway. In this study, the Escherichia coli codA gene, which encodes the enzyme cytosine deaminase, was fused to the light-intensity-regulated gene promoter psbDII. Cytosine deaminase converts 5'-fluorocytosine to the toxic product 5-fluorouracil. Wild-type cells containing an intact signal transduction pathway that regulates the psbDII promoter will die in the presence of this chemical. Cells that carry mutations in the pathway that inactivate the psbDII promoter will not express the codA gene and, consequently, will live on 5'-fluorocytosine, allowing the isolation and subsequent characterization of mutations in this signaling pathway. Utilizing this selection method, we have successfully isolated and characterized mutations in the psbDII pathway. This selection scheme can be used with a tissue-specific or phase-specific promoter fused to the codA gene to direct the timing of expression of codA to obtain mutants defective in temporal or cell-specific expression of a particular pathway. This scheme also allows the isolation of mutants even when a clearly identifiable phenotype is not available. The selection scheme presented here extends the molecular tools available for the genetic dissection of signal transduction pathways.  相似文献   

8.
Mahan SD  Ireton GC  Stoddard BL  Black ME 《Biochemistry》2004,43(28):8957-8964
Suicide gene therapy of cancer is a method whereby cancerous tumors can be selectively eradicated while sparing damage to normal tissue. This is accomplished by delivering a gene, encoding an enzyme capable of specifically converting a nontoxic prodrug into a cytotoxin, to cancer cells followed by prodrug administration. The Escherichia coli gene, codA, encodes cytosine deaminase and is introduced into cancer cells followed by administration of the prodrug 5-fluorocytosine (5-FC). Cytosine deaminase converts 5-FC into cytotoxic 5-fluorouracil, which leads to tumor-cell eradication. One limitation of this enzyme/prodrug combination is that 5-FC is a poor substrate for bacterial cytosine deaminase. The crystal structure of bacterial cytosine deaminase (bCD) reveals that a loop structure in the active site pocket of wild-type bCD comprising residues 310-320 undergoes a conformational change upon cytosine binding, making several contacts to the pyrimidine ring. Alanine-scanning mutagenesis was used to investigate the structure-function relationship of amino acid residues within this region, especially with regard to substrate specificity. Using an E. coli genetic complementation system, seven active mutants were identified (F310A, G311A, H312A, D314A, V315A, F316A, and P318A). Further characterization of these mutants reveals that mutant F316A is 14-fold more efficient than the wild-type at deaminating cytosine to uracil. The mutant D314A enzyme demonstrates a dramatic decrease in cytosine activity (17-fold) as well as a slight increase in activity toward 5-FC (2-fold), indicating that mutant D314A prefers the prodrug over cytosine by almost 20-fold, suggesting that it may be a superior suicide gene.  相似文献   

9.
Yan H  Rommens CM 《Plant physiology》2007,143(2):570-578
Agrobacterium T-DNAs were used to deliver transposable Dissociation (Ds) elements into the nuclei of potato (Solanum tuberosum) cells. A double-selection system was applied to enrich for plants that only contained a transposed Ds element. This system consisted of a positive selection for the neomycin phosphotransferase (nptII) gene positioned within Ds followed by a negative selection against stable integration of the cytosine deaminase (codA) gene-containing T-DNA. Sixteen of 29 transgenic plants were found to contain a transposed element while lacking any superfluous T-DNA sequences. The occurrence of this genotype indicates that Ds elements can transpose from relatively short extrachromosomal DNA molecules into the plant genome. The frequency of single-copy Ds transformation was determined at 0.3%, which is only about 2.5-fold lower than the potato transformation frequency for backbone-free and single-copy T-DNAs. Because of the generally high expression levels of genes positioned within transposed elements, the new transformation method may find broad applicability to crops that are accessible to Agrobacterium T-DNA transfer.  相似文献   

10.
Incorporation of a selectable marker gene during transformation is essential to obtain transformed plastids. However, once transformation is accomplished, having the marker gene becomes undesirable. Here we report on adapting the P1 bacteriophage CRE-lox site-specific recombination system for the elimination of marker genes from the plastid genome. The system was tested by the elimination of a negative selectable marker, codA, which is flanked by two directly oriented lox sites (>codA>). Highly efficient elimination of >codA> was triggered by introduction of a nuclear-encoded plastid-targeted CRE by Agrobacterium transformation or via pollen. Excision of >codA> in tissue culture cells was frequently accompanied by a large deletion of a plastid genome segment which includes the tRNA-ValUAC gene. However, the large deletions were absent when cre was introduced by pollination. Thus pollination is our preferred protocol for the introduction of cre. Removal of the >codA> coding region occurred at a dramatic speed, in striking contrast to the slow and gradual build-up of transgenic copies during plastid transformation. The nuclear cre gene could subsequently be removed by segregation in the seed progeny. The modified CRE-lox system described here will be a highly efficient tool to obtain marker-free transplastomic plants.  相似文献   

11.
以小黑杨(Populus simonii ×P. nigra)花药培养植株无菌苗叶片为外植体, 通过根癌农杆菌(Agrob acteriumtumefaciens)介导法将胆碱氧化酶基因(codA)导入小黑杨中, 共获得4株转化株系, PCR扩增和Southern杂交检测结果全部 呈阳性, 表明codA基因已整合到小黑杨花药培养植株基因组中。荧光定量RT-PCR检测证明, codA基因在小黑杨花药培养植株中获得表达。耐盐实验结果显示, 各转基因株系在0.6%的NaCl浓度下能够生长, 而非转基因对照小黑杨受盐害严重, 说明codA基因的导入提高了转基因植株的耐盐性。  相似文献   

12.
To confirm the anti-tumor effect of engineered neural stem cells (NSCs) expressing cytosine deaminase (CD) and interferon-β (IFN-β) with prodrug 5-fluorocytosine (FC), K562 chronic myeloid leukemia (CML) cells were co-cultured with the neural stem cell lines HB1.F3.CD and HB1.F3.CD.IFN-β in 5-FC containing media. A significant decrease in the viability of K562 cells was observed by the treatment of the NSC lines, HB1.F3.CD and HB1.F3.CD.IFN-β, compared with the control. A modified trans-well assay showed that engineered human NSCs significantly migrated toward K562 CML cells more than human normal lung cells. In addition, the important chemoattractant factors involved in the specific migration ability of stem cells were found to be expressed in K562 CML cells. In a xenograft mouse model, NSC treatments via subcutaneous and intravenous injections resulted in significant inhibitions of tumor mass growth and extended survival dates of the mice. Taken together, these results suggest that gene therapy using genetically engineered stem cells expressing CD and IFN-β may be effective for treating CML in these mouse models.  相似文献   

13.
Tomato (Lycopersicon esculentum Mill.) plants, which normally do not accumulate glycinebetaine (GB), are susceptible to chilling stress. Exposure to temperatures below 10 degrees C causes various injuries and greatly decreases fruit set in most cultivars. We have transformed tomato (cv. Moneymaker) with a chloroplast-targeted codA gene of Arthrobacter globiformis, which encodes choline oxidase to catalyze the conversion of choline to GB. These transgenic plants express codA and synthesize choline oxidase, while accumulating GB in their leaves and reproductive organs up to 0.3 and 1.2 micromol g(-1) fresh weight (FW), respectively. Their chloroplasts contain up to 86% of total leaf GB. Over various developmental phases, from seed germination to fruit production, these GB-accumulating plants are more tolerant of chilling stress than their wild-type counterparts. During reproduction, they yield, on average, 10-30% more fruit following chilling stress. Endogenous GB contents as low as 0.1 micromol g(-1) FW are apparently sufficient to confer high levels of tolerance in tomato plants, as achieved via transformation with the codA gene. Exogenous application of either GB or H2O2 improves both chilling and oxidative tolerance concomitant with enhanced catalase activity. These moderately increased levels of H2O2 in codA transgenic plants, as a byproduct of choline oxidase-catalyzed GB synthesis, might activate the H2O2-inducible protective mechanism, resulting in improved chilling and oxidative tolerances in GB-accumulating codA transgenic plants. Thus, introducing the biosynthetic pathway of GB into tomato through metabolic engineering is an effective strategy for improving chilling tolerance.  相似文献   

14.
Recent studies have suggested that carcinoembryonic antigen (CEA)-promoter sequences are active only in CEA-positive cells, filing in the criteria for tumor specific targeting of suicide genes. However, the present study on gene therapy of colon cancer and cell-specificity of CEA promoter, provide evidence that CEA-positive and CEA-negative cells transfected with E. coli cytosine deaminase (CD) gene under the control of CEA promotor sequence are sensitive to enzyme/pro-drug therapy with 5-fluorocytosine (5-FC). Individual clones derived from the CEA-negative cell lines: melanoma Hs294T and glioblastoma T98G after transfection with CD differed profoundly in their sensitivity to 5-FC. The IC50 values for several clones of the CEA-negative cells were almost the same as for CEA-positive colon cancer cells. Such 5-FC-sensitive clones derived from the population of CEA-negative cells, present even in small number, because of the very effective bystender effect of this enzyme/pro-drug system can cause severe problems during therapy by efficiently killing surrounding normal cells. Safety is the major issue in gene therapy. Our data suggest that the safety of gene-directed enzyme pro-drug therapy (GDEPT) with CEA promoter driven expression of therapeutic genes is not so obvious as it has originally been claimed.  相似文献   

15.
Efficient negative selection systems are increasingly needed for numerous applications in plant biology. In recent years various counter-selectable genes have been tested in six dicotyledonous species, whereas there are no data available for the use of negative selection markers in monocotyledonous species. In this study, we compared the applicability and reliability of two different conditional negative selection systems in transgenic barley. The bacterial codA gene encoding cytosine deaminase, which converts the non-toxic 5-fluorocytosine (5-FC) into the toxic 5-fluorouracil (5-FU), was used for in vitro selection of germinating seedlings. Development of codA-expressing seedlings was strongly inhibited by germinating the seeds in the presence of 5-FC. For selecting plants in the greenhouse, a bacterial cytochrome P450 mono-oxygenase gene, the product of which catalyses the dealkylation of a sulfonylurea compound, R7402, into its cytotoxic metabolite, was used. T1 plants expressing the selectable marker gene showed striking morphological differences from the non-transgenic plants. In experiments with both negative selectable markers, the presence or absence of the transgene, as predicted from the physiological appearance of the plants under selection, was confirmed by PCR analysis. We demonstrate that both marker genes provide tight negative selection; however, the use of the P450 gene is more amenable to large-scale screening under greenhouse or field conditions.  相似文献   

16.
BACKGROUND: We aimed to evaluate the efficacy of gene-directed enzyme-prodrug therapy (GDEPT) using cytosine deaminase in combination with uracil phosphoribosyl transferase (CDUPRT) against intraprostatic mouse androgen-refractory prostate (RM1) tumors in immunocompetent mice. The product of the fusion gene, CDUPRT, converts the prodrug, 5-fluorocytosine (5FC), into 5-fluorouracil (5FU) and other cytotoxic metabolites that kill both CDUPRT-expressing and surrounding cells, via a 'bystander effect'. METHODS: Stably transformed andogen-independent mouse prostate cancer (PC) cells, RM1-CDUPRT, -GFP or GFP/LacZ cells were used. To assess the local bystander effects of CDUPRT-GDEPT, immunocompetent C57BL/6 mice implanted with cell mixtures of RM1-GFP/CDUPRT and RM1-GFP cells in different proportions intraprostatically were treated with 5FC. Pseudo-metastases in the lungs were established by a tail vein injection of untransfected RM1 cells. At necropsy, prostate weight/volume and lung colony counts were assessed. Tumors, lymph nodes, spleens and lungs were frozen or fixed for immunohistochemistry. RESULTS: CDUPRT expression in RM1-GFP/CDUPRT cells or tumors was confirmed by enzymic conversion of 5FC into 5FU, using HPLC. Treatment of mice bearing intraprostatic RM1-GFP/CDUPRT tumors with 5FC resulted in complete regression of the tumors. A 'local bystander effect' was seen, even though only 20% of the cells expressed CDUPRT. More importantly a significant reduction in pseudo-metastases of RM1 cells in lungs indicated a 'distant bystander effect'. Immunohistochemical evaluation of the treated tumors showed increased necrosis and apoptosis, with decreased tumor vascularity. There was also a significant increase in tumour-infiltration by macrophages, CD4+ T and natural killer cells. CONCLUSIONS: We conclude that CDUPRT-GDEPT significantly suppressed the aggressive growth of RM1 prostate tumors and lung pseudo-metastases via immune mechanisms involving necrosis and apoptosis.  相似文献   

17.
To develop a model system for studies of homologous recombination in plants, transgenic Nicotiana tabacum and Nicotiana plumbaginifolia lines were generated harbouring a single target T-DNA containing the negative selective codA gene encoding cytosine deaminase (CD) and the β-glucuronidase (GUS) gene. Subsequently, the target lines were transformed with a replacement-type T-DNA vector in which the CD gene and the GUS promoter had been replaced with a kanamycin-resistance gene. For both Nicotiana species kanamycin-resistant lines were selected which had lost the CD gene and the GUS activity. One tobacco line was the result of a precise gene targeting event. However, most other lines were selected due to a chromosomal deletion of the target locus. The deletion frequency of the target locus varied between target lines, and could be present in up to 20% of the calli which were grown from leaf protoplasts. T-DNA transfer was not required for induction of the deletions, indicating that the target loci were unstable. A few lines were obtained in which the target locus had been deleted partially. Sequence analysis of the junctions revealed deletion of DNA sequences between microhomologies. We conclude that T-DNAs, which are stable during plant development as well as in transmission to the offspring, may become unstable during propagation in callus tissue. The relationships between callus culture, genetic instability and the process of T-DNA integration and deletion in the plant genome are discussed.  相似文献   

18.
Tomato (Lycopersicon esculentum Mill. cv. Moneymaker) plants were transformed with a gene for choline oxidase (codA) from Arthrobacter globiformis. The gene product (CODA) was targeted to the chloroplasts (Chl-codA), cytosol (Cyt-codA) or both compartments simultaneously (ChlCyt-codA). These three transgenic plant types accumulated different amounts and proportions of glycinebetaine (GB) in their chloroplasts and cytosol. Targeting CODA to either the cytosol or both compartments simultaneously increased total GB content by five- to sixfold over that measured from the chloroplast targeted lines. Accumulation of GB in codA transgenic plants was tissue dependent, with the highest levels being recorded in reproductive organs. Despite accumulating, the lowest amounts of GB, Chl-codA plants exhibited equal or higher degrees of enhanced tolerance to various abiotic stresses. This suggests that chloroplastic GB is more effective than cytosolic GB in protecting plant cells against chilling, high salt and oxidative stresses. Chloroplastic GB levels were positively correlated with the degree of oxidative stress tolerance conferred, whereas cytosolic GB showed no such a correlation. Thus, an increase in total GB content does not necessarily lead to enhanced stress tolerance, but additional accumulation of chloroplastic GB is likely to further raise the level of stress tolerance beyond what we have observed.  相似文献   

19.
20.
以小黑杨(Populus simonii×p.nigra)花药培养植株无菌苗叶片为外植体,通过根癌农杆菌(Agrobacterium tumefaciens)介导法将胆碱氧化酶基因(codA)导入小黑杨中,共获得4株转化株系,PCR扩增和Southern杂交检测结果全部呈阳性,表明codA基因已整合到小黑杨花药培养植株基因组中。荧光定量RT-PCR检测证明,codA基因在小黑杨花药培养植株中获得表达。耐盐实验结果显示,各转基因株系在0.6%的NaCl浓度下能够生长,而非转基因对照小黑杨受盐害严重,说明codA基因的导入提高了转基因植株的耐盐性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号