首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Incubation of submitochondrial particles with relatively low concentrations of ethanol (20–100 mm) or acetaldehyde (1–10 mm) produces alterations in the electron paramagnetic resonance spectra of the iron-sulfur centers in the NADH dehydrogenase segments of the respiratory chain. The iron-sulfur centers in the NADH dehydrogenase region are most sensitive to both ethanol and acetaldehyde, in comparison to the iron-sulfur centers in succinate dehydrogenase and the cytochrome b-c region. Centers N-3, 4, N-5, 6 and N-1b are affected after relatively short incubation periods (3–30 min) while center N-2 shows considerable sensitivity over somewhat longer incubations (20–90 min). The most ethanol-sensitive center in the succinate dehydrogenase region of the respiratory chain is high potential iron-sulfur protein-type center S-3. Potentiometric analysis shows that these alterations are not due to simple changes in the redox state caused by addition of dissolved oxygen. Changes in the electron paramagnetic resonance spectra can be correlated with decreased rates of oxidation of NADH and, to a lesser extent, succinate in both ethanol- and acetaldehyde-treated submitochondrial particles.  相似文献   

2.
Iron-sulfur clusters present in rat liver submitochondrial particles were characterized by ESR at temperatures between 30 and 5.5 K combined with potentiometric titrations. The spectral and thermodynamic characteristics of the iron-sulfur clusters were generally similar to those previously reported for pigeon or bovine heart submitochondrial particles. Clusters N-1a, N-1b, N-2, N-3 and N-4 of NADH dehydrogenase had midpoint oxidation-reduction potentials at pH 7.5 of ?425, ?265, ?85, ?240 and ?260 mV, respectively. Clusters S-1 and S-3 of succinate dehydrogenase had midpoint potentials of 0 and +65 mV, respectively. The iron-sulfur cluster of electron-transferring flavoprotein-ubiquinone oxidoreductase exhibited the gz signal at g = 2.08 and had a midpoint potential of +30 mV. This signal was relatively prominent in rat liver compared to pigeon or bovine heart.Submitochondrial particles from rats chronically treated with ethanol (36% of total calories, 40 days) showed decreases of 20–30% in amplitudes of signals due to clusters N-2, N-3 and N-4 compared to those from pair-fed control rats. Signals from clusters N-1b, S-1, S-3 and electron-transferring flavoprotein-ubiquinone oxidoreductase were unaffected. Microwave power-saturation behavior was similar for both submitochondrial particle preparations, suggesting that the lower signal amplitudes reflected a lower content of these particular clusters. NADH dehydrogenase activity was significantly decreased (46%), whilst succinate dehydrogenase activity was elevated (25%), following chronic ethanol consumption. The results indicate that chronic ethanol treatment leads to an alteration of the structure and function of the NADH dehydrogenase segment of the electron transfer chain. This alteration is one of the factors contributing to the lower respiration rates observed following chronic ethanol administration.  相似文献   

3.
A procedure was developed to separate and partially purify two NAD(P)H dehydrogenases from the inner membrane of cauliflower (Brassica oleracea L.) mitochondria. The procedure used Triton X-100 extraction followed by (NH4)2SO4 precipitation and gel filtration (Sepharose G-200 column) chromatography. The first dehydrogenase fraction (which eluted in the column void volume) was specific for NADH, was stimulated by KCl addition, and was inhibited by acidic pH, sulfhydryl reagents, and elevated temperature. This fraction contained two major polypeptides with molecular weights of about 57,600 and 32,600 daltons. The fraction exhibited electron paramagnetic resonance (EPR) signals associated with a reduced (ferredoxin-type) iron-sulfur center.

A second dehydrogenase fraction was eluted from the column after removal of the first dehydrogenase. This fraction oxidized NADH and NADPH, was stable at high temperatures, and had a broad pH optima that ranged from 6.0 to 7.8. Although it was relatively insensitive to additions of monovalent and divalent cations, its activity was sensitive to incubation with sulfhydryl reagents. The second dehydrogenase fraction contained five major polypeptides and lacked the iron-sulfur protein EPR signals shown by the first dehydrogenase fraction.

The dehydrogenase fractions represent three potential sites of entry to mitochondrial electron transport; two sites for NADH and a third site for NADPH.

  相似文献   

4.
Chromatophores from the photosynthetic bacterium, Chromatium vinosum, have been prepared which photoreduce NAD+ with either succinate or reduced dichlorophenolindophenol as electron donors. NAD+ reduction is inhibited by uncouplers as well as inhibitors of cyclic photophosphorylation. These chromatophores contain several bound iron-sulfur centers which have been detected by low-temperature EPR spectroscopy. One center, having a g 2.01 EPR signal in the oxidized state, has Em7.5 = +50 mV and is partially reduced by succinate in the dark. Three iron-sulfur centers having g 1.93 EPR signals have been resolved by redox titration, and the Em7.5 values of these centers are ?50, ?175 and ?250 mV, respectively. Studies of the involvement of these centers in electron transfer from donors to NAD+ have indicated that the center with Em = ?50 mV is succinate reducible in the dark and appears to be analogous to center S-1 of succinic dehydrogenase in other systems. An additional g 1.93 iron-sulfur center can be photoreduced in the presence of electron donors and this reduction is inhibited by uncouplers. The possible role of the two low-potential iron-sulfur centers in relation to the dehydrogenases functioning in NAD+ reduction is considered.  相似文献   

5.
Sixteen novel pyrazole carboxamides with diarylamines scaffold were designed, synthesized and characterized in detail via 1H NMR, 13C NMR and ESI-HRMS. Preliminary bioassays showed that some of the target compounds exhibited good antifungal activity against Rhizoctonia solani, Fusarium oxysporum, Phytophthora infestans and Fusarium graminearum. Among them, compound 1c exhibited the highest antifungal activities against R. solani in vitro with EC50 value of 0.005?mg/L, superior to the commercially available fungicide fluxapyroxad (EC50?=?0.033?mg/L). And compound 1c (IC50?=?0.034?mg/L) showed higher inhibition abilities against succinate dehydrogenase than fluxapyroxad (IC50?=?0.037?mg/L). This study suggests that compound 1c could be regarded as a potential succinate dehydrogenase inhibitor.  相似文献   

6.
Succinate dehydrogenase has been solubilized from R. rubrum chromatophores with the use of chaotropic agents, and purified approximately 80-fold. The preparation (SDr) contains 8 g-atoms of iron per mole of flavin, and has a turnover number of approximately 4000 (moles succinate oxidized by ferricyanide or phenazine methosulfate/mole of flavin/min at 38 °C). Its absorption and EPR spectra are similar to those of bovine heart succinate dehydrogenase. SDr can cross-interact with the bovine heart electron-transport system (alkali-inactivated ETP) and reconstitute succinoxidase activity with an efficiency comparable to the reconstitution activity of purified bovine heart succinate dehydrogenase. Preliminary results suggest that SDr has a molecular weight of approximately 85,000, and that it is composed of a flavoprotein subunit with a molecular weight of approximately 60,000, plus a second subunit (possibly an iron-sulfur protein) with a molecular weight of approximately 25,000.  相似文献   

7.
The high-potential iron-sulfur protein (HiPIP) center of succinate dehydrogenase has an electron paramagnetic resonance (epr) signal in the oxidized form, centered at g = 2.01, and under certain conditions this epr signal is accompanied by absorbances at g = 2.04, g = 1.99, and g = 1.96. These absorbances have been attributed to a spin-spin interaction of paramagnetic species, the semiquinone form of ubiquinone being involved (Ruzicka et al., Proc. Nat. Acad. Sci. USA72, 2886). In the present work this magnetic interaction is studied further; it is concluded that of the three possible species (HiPIP, Flavin H and UQ?H (ubiquinone)) which may interact with UQ?H; a second UQ? most likely partner for the interaction. Nonetheless, the HiPIP center of succinate dehydrogenase also plays a role in the interaction by acting as a “magnetic relaxer” of one or both of the interacting UQ?Hs. The physiological reaction of that part of the ubiquinone pool associated with the succinate dehydrogenase (on the matrix side of the inner mitochondrial membrane) is UQH2 ? UQ?H + H+ + e?. This is in line with recent postulates of the mechanism of ubiquinone mediation in electron transfer.  相似文献   

8.
It was found that the succinate oxidation rate in mitochondria of flight muscles of Bombus terrestris L. increased by a factor of 2.15 after flying for 1 h. An electrophoretically homogenous preparation of succinate dehydrogenase with a specific activity of 7.14 U/mg protein and 81.55-fold purity was isolated from B. terrestris flight muscles. It is shown that this enzyme is represented in the muscle tissue by only one isoform with R f = 0.24. The molecular weight of the native molecule and its subunits A and B was determined. The kinetic characteristics of succinate dehydrogenase (K m = 0.33 mM) and the optimal concentration of hydrogen ions (pH 7.8) were established, and the effect of salts on the enzyme activity was studied. The role of succinate as a respiratory substrate in stress and the structural and functional characteristics of the succinate dehydrogenase system in the flight muscles of insects are discussed.  相似文献   

9.
At temperatures below 20°K, EPR signals from a new iron-sulfur center (designated here as Center S-2 or (Fe-S)S-2) in addition to the classical “g = 1.94 signal” (designated as Center S-1 or (Fe-S)S-1) were detected in purified, soluble succinate dehydrogenase, particulate succinate ubiquinone reductase (Complex II) and particulate succinate cytochrome c reductase from bovine heart. The measured half-reduction potential (Em7.4) of Center S-1 was 0 ± 10 mV, while Em7.4 of Center S-2 was ?260 ± 15 mV in the membrane bound preparations. Upon solubilization of succinate dehydrogenase, the EPR behavior of Center S-2 became extremely labile similar to the characteristics of the reconstitutive activity of succinate dehydrogenase toward the rest of the respiratory chain.  相似文献   

10.
Iron-sulfur proteins play an essential role in many biologic processes. Hence, understanding their assembly is an important goal. In Escherichia coli, the protein IscA is a product of the isc (iron-sulfur cluster) operon and functions in the iron-sulfur cluster assembly pathway in this organism. IscA is conserved in evolution, but its function in mammalian cells is not known. Here, we provide evidence for a role for a human homologue of IscA, named IscA1, in iron-sulfur protein biogenesis. We observe that small interfering RNA knockdown of IscA1 in HeLa cells leads to decreased activity of two mitochondrial iron-sulfur enzymes, succinate dehydrogenase and mitochondrial aconitase, as well as a cytosolic iron-sulfur enzyme, cytosolic aconitase. IscA1 is observed both in cytosolic and mitochondrial fractions. We find that IscA1 interacts with IOP1 (iron-only hydrogenase-like protein 1)/NARFL (nuclear prelamin A recognition factor-like), a cytosolic protein that plays a role in the cytosolic iron-sulfur protein assembly pathway. We therefore propose that human IscA1 plays an important role in both mitochondrial and cytosolic iron-sulfur cluster biogenesis, and a notable component of the latter is the interaction between IscA1 and IOP1.  相似文献   

11.
Succinate dehydrogenase is a conserved membrane-bound enzyme consisting of two nonidentical subunits: a flavo iron-sulfur protein (Fp) subunit, containing a covalently bound flavin, and an iron-sulfur protein (Ip) subunit. Bacillus subtilis succinate dehydrogenase in wild type bacteria and 12 well characterized succinate dehydrogenase-defective mutants were examined by low temperature EPR spectroscopy to characterize the enzyme and study subunit location and biosynthesis of its iron-sulfur clusters. The wild type B. subtilis enzyme contains iron-sulfur clusters which are analogous to clusters S-1 and S-3 of bovine heart succinate dehydrogenase but with slightly different EPR characteristics. Spins from cluster S-2 were not detectable as in the case of the intact form of bovine heart succinate dehydrogenase. However, dithionite reduction of the B. subtilis enzyme greatly enhanced spin relaxation of the ferredoxin-type cluster S-1, indicating the presence of the cluster S-2. Iron-sulfur cluster S-1 was found to be assembled in soluble succinate dehydrogenase subunits in the cytoplasm, but only if full-length Fp polypeptides and relatively large fragments of Ip polypeptides were present. Cluster S-1 was not detected in mutants with soluble mutated Fp polypeptides or in a mutant totally lacking Ip subunit polypeptide. Iron-sulfur clusters S-1, S-2, and S-3 were assembled also when the covalently bound flavin in the Fp subunit was absent. Clusters S-1 and S-3 in the membrane-bound flavin-deficient succinate dehydrogenase were not reduced by succinate but could be reduced by electron transfer from NADH dehydrogenase via the menaquinone pool.  相似文献   

12.
In addition to the two species of ferredoxin-type iron-sulfur centers (Centers S-1 and S-2), a Hipip-type iron-sulfur center (Center S-3) has been detected in the reconstitutively active soluble succinate dehydrogenases. Em7,4 determined in a particulate, antimycin A sensitive succinate-cytochrome c reductase is +60 ± 15 mV. This center is extremely labile towards oxygen in a manner similar to the reconstitutive activity of the dehydrogenase. Even freshly prepared reconstitutively active enzyme shows a considerably diminished content of Center S-3 relative to flavin and displays a partly modified spectra. All reconstitutively inactive dehydrogenases give rise to a highly modified or no Center S-3 spectra at all. These observations indicate that Center S-3 is a constituent of succinate dehydrogenase and plays a role in the physiological function of the enzyme, i.e. transferring electrons most probably to ubiquinone.  相似文献   

13.
A method for isolating intact chloroplasts from Chlamydomonas reinhardtii F-60 was developed from the Klein, Chen, Gibbs, Platt-Aloia procedure ([1983] Plant Physiol 72: 481-487). Protoplasts, generated by treatment with autolysine, were lysed with a solution of digitonin and fractionated on Percoll step gradients. The chloroplasts were assessed to be 90% intact (ferricyanide assay) and free from cytoplasmic contamination (NADP isocitrate dehydrogenase activity) and to range from 2 to 5% in mitochondrial contamination (cytochrome c oxidase activity). About 25% of the cellular succinate dehydrogenase activity (21.6 micromoles per milligram chlorophyll per hour, as determined enzymically) was placed within the chloroplast. Chloroplastic succinate dehydrogenase had a Km for succinate of 0.55 millimolar and was associated with the thylakoidal material derived from the intact chloroplasts. This same thylakoidal material, with an enzymic assay of 21.6 micromoles per milligram chlorophyll per hour was able to initiate a light-dependent uptake of oxygen at a rate of 16.4 micromoles per milligram chlorophyll per hour when supplied with succinate and methyl viologen. Malonate was an apparent competitive inhibitor of this reaction. The succinate dehydrogenase activity present in the chloroplast was sufficient to account for the photoanaerobic rate of acetate dissimilation in H2 adapted Chlamydomonas (M Gibbs, RP Gfeller, C Chen [1986] Plant Physiol 82: 160-166).  相似文献   

14.
15.
Kayode S. Oyedotun  Bernard D. Lemire 《BBA》2007,1767(12):1436-1445
The coupling of succinate oxidation to the reduction of ubiquinone by succinate dehydrogenase (SDH) constitutes a pivotal reaction in the aerobic generation of energy. In Saccharomyces cerevisiae, SDH is a tetramer composed of a catalytic dimer comprising a flavoprotein subunit, Sdh1p and an iron-sulfur protein, Sdh2p and a heme b-containing membrane-anchoring dimer comprising the Sdh3p and Sdh4p subunits. In order to investigate the role of heme in SDH catalysis, we constructed an S. cerevisiae strain expressing a mutant enzyme lacking the two heme axial ligands, Sdh3p His-106 and Sdh4p Cys-78. The mutant enzyme was characterized for growth on a non-fermentable carbon source, for enzyme assembly, for succinate-dependent quinone reduction and for its heme b content. Replacement of both Sdh3p His-106 and Sdh4p Cys-78 with alanine residues leads to an undetectable level of cytochrome b562. Although enzyme assembly is slightly impaired, the apocytochrome SDH retains a significant ability to reduce quinone. The enzyme has a reduced affinity for quinone and its catalytic efficiency is reduced by an order of magnitude. To better understand the effects of the mutations, we employed atomistic molecular dynamic simulations to investigate the enzyme's structure and stability in the absence of heme. Our results strongly suggest that heme is not required for electron transport from succinate to quinone nor is it necessary for assembly of the S. cerevisiae SDH.  相似文献   

16.
17.
Linda Yu  Chang-an Yu 《BBA》1980,593(1):24-38
Purified ubiquinone-binding protein in succinate-ubiquinone reductase (QPs) reconstitutes with pure soluble succinate dehydrogenase to form succinate-ubiquinone oxidoreductase upon mixing of the two proteins in phosphate buffer at neutral pH. The maximal reconstitution was found with a weight ratio of succinate dehydrogenase to QPs of about 5, which is fairly close to the calculated value of 6.5, a value obtained by assuming one mole of QPs reacts with one mole of succinate dehydrogenase. Succinate-cytochrome c reductase was reconstituted when succinate dehydrogenase and QPs were added to Complex III or cytochrome b-c1 III complex (a highly purified ubiquinol-cytochrome c reductase). The reconstituted enzyme possessed kinetic parameters which were identical to those of the native enzyme complex. Interaction between QPs and succinate dehydrogenase resulted in the disappearance of low Km ferricyanide reductase activity from the latter. Unlike soluble succinate dehydrogenase, the reconstituted enzyme, as well as native succinate-cytochrome c reductase, reduced low concentration ferricyanide only in the presence of excess ubiquinone. The apparent Km for ubiquinone was 6 μM for reduction of ferricyanide (300 μM) by succinate, which is similar to the Km when ubiquinone was used as electron acceptor. When 2,6-dichlorophenolindophenol was used as electron acceptor for reconstitution of succinate-ubiquinone reductase very little or no exogeneous ubiquinone was needed to show the maximal activity with QPs made by Method II, indicating that the bound ubiquinone in QPs is enough for enzymatic activity. In addition to restoring the succinate-ubiquinone reductase activity the interaction between QPs and succinate dehydrogenase not only stabilized succinate dehydrogenase but also partially deaggregated QPs. The reconstituted succinate-ubiquinone reductase had a minimal molecular weight of 120000 when the reconstituted system was dispersed in 0.2% Triton X-100. The maximal reconstitution was observed at neutral pH in phosphate buffer, Tris-acetate or Tris-phosphate buffer. Tris-HCl buffer, however, produced a less efficient reconstitution. These results indicate that the interaction between QPs and succinate dehydrogenase may involve some cationic group which has a high affinity for Cl?. Primary amino groups of QPs are not directly involved in the interaction as the reconstitution showed no significant difference when the amino groups of QPs were alkylated with fluorescamine. The Arrhenius plots of reconstituted succinate-ubiquinone reductase show that the enzyme catalyzes the reaction with an activation energy of 19.7 kcal/mol and 26.6 kcal/mol at temperatures above and below 26°C, respectively. These activation energies are similar to those obtained with native enzyme. The Arrhenius plots of the interaction between QPs and succinate dehydrogenase also have a break point at 26°C. The activation energy for this interaction was calculated to be 11.2 kcal/mol and 6.9 kcal/mol for the temperatures above and below the break-point. The significance of the difference in activation energies between the enzymatic reaction and the reconstitution reaction are further explored in the discussion.  相似文献   

18.
Reducing equivalents are an important cofactor for efficient synthesis of target products. During metabolic evolution to improve succinate production in Escherichia coli strains, two reducing equivalent-conserving pathways were activated to increase succinate yield. The sensitivity of pyruvate dehydrogenase to NADH inhibition was eliminated by three nucleotide mutations in the lpdA gene. Pyruvate dehydrogenase activity increased under anaerobic conditions, which provided additional NADH. The pentose phosphate pathway and transhydrogenase were activated by increased activities of transketolase and soluble transhydrogenase SthA. These data suggest that more carbon flux went through the pentose phosphate pathway, thus leading to production of more reducing equivalent in the form of NADPH, which was then converted to NADH through soluble transhydrogenase for succinate production. Reverse metabolic engineering was further performed in a parent strain, which was not metabolically evolved, to verify the effects of activating these two reducing equivalent-conserving pathways for improving succinate yield. Activating pyruvate dehydrogenase increased succinate yield from 1.12 to 1.31 mol/mol, whereas activating the pentose phosphate pathway and transhydrogenase increased succinate yield from 1.12 to 1.33 mol/mol. Activating these two pathways in combination led to a succinate yield of 1.5 mol/mol (88% of theoretical maximum), suggesting that they exhibited a synergistic effect for improving succinate yield.  相似文献   

19.
Chang-An Yu  Linda Yu 《BBA》1980,591(2):409-420
An improved method was developed to sequentially fractionate succinate-cytochrome c reductase into three reconstitutive active enzyme systems with good yield: pure succinate dehydrogenase, ubiquinone-binding protein fraction and a highly purified ubiquinol-cytochrome c reductase (cytochrome b-c1 III complex).An extensively dialyzed succinate-cytochrome c reductase was first separated into a succinate dehydrogenase fraction and the cytochrome b-c1 complex by alkali treatment. The resulting succinate dehydrogenase fraction was further purified to homogeneity by the treatment of butanol, calcium phosphate gel adsorption and ammonium sulfate fractionation under anaerobic condition in the presence of succinate and dithiothreitol. The cytochrome b-c1 complex was separated into cytochrome b-c1 III complex and ubiquinone-binding protein fractions by careful ammonium acetate fractionation in the presence of deoxycholate.The purified succinate dehydrogenase contained only two polypeptides with molecular weights of 70 000 and 27 000 as revealed by the sodium dodecyl sulfate polyacrylamide gel electrophoretic pattern. The enzyme has the reconstitutive activity and a low Km ferricyanide reductase activity of 85 μmol succinate oxidized per min per mg protein at 38°C.Chemical composition analysis of cytochrome b-c1 III complex showed that the preparation was completely free of contamination of succinate dehydrogenase and ubiquinone-binding protein and was 30% more pure than the available preparation.When these three components were mixed in a proper ratio, a thenoyl-trifluoroacetone- and antimycin A-sensitive succinate-cytochrome c reductase was reconstituted.  相似文献   

20.
Succinate is an important commodity chemical currently used in the food, pharmaceutical, and polymer industries. It can also be chemically converted into other major industrial chemicals such as 1,4-butanediol, butadiene, and tetrahydrofuran. Here we metabolically engineered a model cyanobacterium Synechococcus elongatus PCC 7942 to photosynthetically produce succinate. We expressed the genes encoding for α-ketoglutarate decarboxylase and succinate semialdehyde dehydrogenase in S. elongatus PCC 7942, resulting in a strain capable of producing 120 mg/L of succinate. However, this recombinant strain exhibited severe growth retardation upon induction of the genes encoding for the succinate producing pathway, potentially due to the depletion of α-ketoglutarate. To replenish α-ketoglutarate, we expressed the genes encoding for phosphoenolpyruvate carboxylase and citrate synthase from Corynebacterium glutamicum into the succinate producing strain. The resulting strain successfully restored the growth phenotype and produced succinate with a titer of 430 mg/L in 8 days. These results demonstrated the possibility of photoautotrophic succinate production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号