首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effects of exercise on insulin binding and glucose metabolism in muscle   总被引:1,自引:0,他引:1  
To elucidate the mechanism of enhanced insulin sensitivity by muscle after exercise, we studied insulin binding, 2-deoxy-D-[1-14C]glucose (2-DOG) uptake and [5-3H]glucose utilization in glycolysis and glycogenesis in soleus and extensor digitorum longus (EDL) muscles of mice after 60 min of treadmill exercise. In the soleus, glycogenesis was increased after exercise (P less than 0.05) and remained sensitive to the action of insulin. Postexercise insulin-stimulated glycolysis was also increased in the soleus (P less than 0.05). In the EDL, glycogenesis was increased after exercise (P less than 0.05). However, this was already maximal in the absence of insulin and was not further stimulated by insulin (0.1-4 nM). The disposal of glucose occurred primarily via the glycolytic pathway (greater than 60%) in the soleus and EDL at rest and after exercise. The uptake of 2-DOG uptake was not altered in the soleus after exercise (4 h incubation at 18 degrees C). However, with 1-h incubations at 37 degrees C, a marked increase in 2-DOG uptake after exercise was observed in the soleus (P less than 0.05) in the absence (0 nM) and presence of insulin (0.2-4 nM) (P less than 0.05). A similar postexercise increase in 2-DOG uptake occurred in EDL. Despite the marked increase in glucose uptake and metabolism, no changes in insulin binding were apparent in either EDL or soleus at 37 degrees C or 18 degrees C. This study shows that the postexercise increase of glucose disposal does not appear to be directly attributable to increments in insulin binding to slow-twitch and fast-twitch muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Borst SE  Snellen HG 《Life sciences》2001,69(13):1497-1507
We assessed the effects of combined metformin treatment and exercise training on body composition, on insulin concentration following glucose loading, on insulin-stimulated glucose transport in skeletal muscle, and on muscle glycogen content. Male Sprague-Dawley rats were treated for 35 days with or without metformin (320 mg/kg/day) and/or treadmill exercise training (20 min at 20 m/min, 5 days/wk). Because metformin reduces food intake, pair-fed controls were included. Metformin, training, and pair-feeding all decreased food intake, body weight, and insulin concentration following glucose loading. Metformin and training reduced intra-abdominal fat, but pair feeding did not. In isolated strips derived from soleus, epitrochlearis and extensor carpi ulnaris muscles, metformin increased insulin-stimulated transport of [3H]-2-deoxyglucose by 90%, 89% and 125%, respectively (P < 0.02) and training increased [3H]-2-deoxyglucose transport in the extensor carpi ulnaris muscle only (66%, P < 0.05). Pair-feeding did not alter [3H]-2-deoxyglucose transport. Training increased gastrocnemius muscle glycogen by 100% (P < 0.001). Metformin and pair-feeding did not alter muscle glycogen. We conclude that metformin reverses the maturation-induced impairment of insulin responsiveness in Sprague-Dawley rats by increasing insulin-stimulated glucose transport in skeletal muscle and that this effect is not secondary to reduced food intake. We also conclude that metformin and exercise training may increase insulin sensitivity by different mechanisms, with training causing increased glucose transport only in some muscles and also causing increased muscle glycogen storage.  相似文献   

3.
Since there are data to indicate that heavy exercise decreases insulin binding to skeletal muscle at a point when glucose uptake is known to be augmented, we tested the hypothesis that insulin-stimulated glucose uptake and metabolism are dissociated from insulin binding after exercise. Therefore, insulin binding, 2-deoxy-d-glucose (2-DOG) uptake and glucose incorporation into glycogen and glycolysis were compared in soleus and EDL muscles of intensively exercised (2-3 h) mice and non-exercised mice. Basal 2-DOG uptake was increased in the exercised EDL (P less than 0.05) but not in the exercised soleus (P greater than 0.05). However, in both muscles intense exercise increased insulin-stimulated (0.1-16 nM) 2-DOG uptake (P less than 0.05). The rates of glycogenesis were increased in both the exercised muscles (P less than 0.05) as was the rate of glycolysis in the exercise soleus (P less than 0.05). Glycolysis was not altered in the EDL (P greater than 0.05). In the face of the increased 2-DOG uptake and glucose metabolism in the exercised muscles, insulin binding was not altered in the exercised soleus muscle (P greater than 0.05) and was decreased in the exercised EDL (P less than 0.05). These results indicate that after intense exercise there is a dissociation of insulin binding from insulin action on glucose uptake and metabolism in skeletal muscles.  相似文献   

4.
It has been suggested that nitric oxide (NO) is a key regulator of carbohydrate metabolism in skeletal muscle. The present study was undertaken to examine the effects of chronic in vivo competitive antagonism of NO synthase (NOS) by the administration of N(omega)-nitro-L-arginine methyl ester (L-NAME) in the drinking water (1 mg/ml) for 14 days on glucose tolerance and skeletal muscle glucose transport in rats. Oral glucose tolerance tests (OGTT) revealed an impaired glucose tolerance in the L-NAME-treated rats as reflected by the area under the glucose curve (4675 +/- 514 mg% x 120 min (control) vs 6653 +/- 571 mg% x 120 min (L-NAME treated); P < 0.03). While a large rise in plasma insulin concentration was present in the control rats (0.87 +/- 0.34 ng/ml, P < 0.001) during the first 15 min of the OGTT, rises in plasma insulin concentration were absent in the L-NAME-treated rats (0.18 +/- 0.13 ng/ml, P = NS). Intravenous glucose tolerance tests confirmed an impaired insulin secretion in the L-NAME-treated rats. In contrast, insulin-stimulated 2-deoxyglucose transport was enhanced (P < 0.03) by chronic NOS inhibition (5.29 +/- 0.83 nmol/g/min) compared to control rats (2.21 +/- 0.90 nmol/g/min). Plasma sodium concentrations were lower and plasma potassium concentrations were higher in the L-NAME-treated group, indicating an impaired electrolyte status. We conclude that chronic in vivo administration of a NOS inhibitor, while not impairing basal parameters of carbohydrate metabolism, may manifest different responses than acute exposure to the same agent in vitro.  相似文献   

5.
Borst SE  Snellen HG  Lai HL 《Life sciences》2000,67(2):165-174
Although the glucose-lowering properties of metformin are well-established, its effects on glucose metabolism in skeletal muscle have not been clearly defined. We tested the effects of metformin in young adult male Sprague-Dawley rats, which have a documented reduced response to insulin in skeletal muscle. Rats were treated with metformin for 20 days (320 mg/kg/day) in the drinking water. During this period, metformin completely prevented the increase in food intake and decreased adiposity by 30%. Metformin also reduced insulin secretion by 37% following an intra-peritoneal injection of glucose. Finally, metformin enhanced transport of [3H]-2-deoxyglucose in isolated strips of soleus muscle. Metformin substantially increased insulin-stimulated transport, while having no effect on basal transport. In control rats, a maximal concentration of insulin stimulated transport 77% above basal. In metformin-treated rats, insulin stimulated transport 206% above basal. We conclude that in the Sprague-Dawley rat model, metformin causes a significant increase in insulin-responsiveness.  相似文献   

6.
High-fat feeding (HFF) is a well-accepted model for nutritionally-induced insulin resistance. The purpose of this investigation was to assess the metabolic responses of female lean Zucker rats provided regular chow (4% fat) or a high-fat chow (50% fat) for 15 wk. HFF rats spontaneously adjusted food intake so that daily caloric intake matched that of chow-fed (CF) controls. HFF animals consumed more (P < 0.05) calories from fat (31.9 +/- 1.2 vs. 2.4 +/- 0.2 kcal/day) and had significantly greater final body weights (280 +/- 10 vs. 250 +/- 5 g) and total visceral fat (24 +/- 3 vs. 10 +/- 1 g). Fasting plasma insulin was 2.3-fold elevated in HFF rats. Glucose tolerance (58%) and whole body insulin sensitivity (75%) were markedly impaired in HFF animals. In HFF plantaris muscle, in vivo insulin receptor beta-subunit (IR-beta) and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation and phosphorylation of Akt Ser473 and glycogen synthase kinase-3beta (GSK-3beta) Ser9, relative to circulating insulin levels, were decreased by 40-59%. In vitro insulin-stimulated glucose transport in HFF soleus was decreased by 54%, as were IRS-1 tyrosine phosphorylation (26%) and phosphorylation of Akt Ser473 (38%) and GSK-3beta Ser9 (25%), the latter indicative of GSK-3 overactivity. GSK-3 inhibition in HFF soleus using CT98014 increased insulin-stimulated glucose transport (28%), IRS-1 tyrosine phosphorylation (28%) and phosphorylation of Akt Ser473 (38%) and GSK-3beta Ser9 (48%). In summary, the female lean Zucker rat fed a high-fat diet represents an isocaloric model of nutritionally-induced insulin resistance associated with moderate visceral fat gain, hyperinsulinemia, and impairments of skeletal muscle insulin-signaling functionality, including GSK-3beta overactivity.  相似文献   

7.
It has been reported that pertussis toxin (PTX) suppresses the function of trimeric guanine nucleotide binding protein (G-protein). We examined the effect of PTX on insulin-induced glucose uptake, diacylglycerol (DG)-protein kinase C (PKC) signalling, phosphatidylinositol (PI) 3-kinase and PKC zeta activation and insulin-induced tyrosine phosphorylation of Gialpha to clarify the role of G-protein for insulin-mediated signal transduction mechanism in rat adipocytes and soleus muscles. Isolated adipocytes and soleus muscles were preincubated with 0.01 approximately 1 ng/ml PTX for 2 hours, followed by stimulation with 10-100 nM insulin or 1 microM tetradecanoyl phorbol-13-acetate (TPA). Pretreatment with PTX resulted in dose-responsive decreases in insulin-stimulated [3H]2-deoxyglucose (DOG) uptake, and unchanged TPA-stimulated [3H]2-DOG uptake, without affecting basal [3H]2-DOG uptake. In adipocytes, insulin-induced DG-PKC signalling, PI 3-kinase activation and PKC zeta translocation from cytosol to the membrane were suppressed when treated with PTX, despite no changes in [125I]insulin-specific binding and insulin receptor tyrosine kinase activity. Moreover, to elucidate insulin-stimulated tyrosine phosphorylation of 40 kDa alpha-subunit of G-protein (Gialpha-2), adipocytes were stimulated with 10 nM insulin for 10 minutes, homogenized, immunoprecipitated with anti-phosphotyrosine antibody, and immunoblotted with anti-Gialpha-2 antibody. Insulin-induced tyrosine phosphorylation of Gialpha-2 was found by immunoblot analysis with anti-Gialpha-2 antibody. These results suggest that G-protein regulates DG-PKC signalling by binding of Gialpha-2 with GTP and PI 3-kinase-PKC zeta signalling by releasing of Gbetagamma via dissociation of trimeric G-protein after insulin receptor tyrosine phosphorylation in insulin-sensitive tissues.  相似文献   

8.
Borst SE  Bagby GJ 《Cytokine》2004,26(5):217-222
Overexpression of mRNA for tumor necrosis factor-alpha (TNF-alpha) has been observed in adipose tissue in several rodent models of insulin resistance. The purpose of the present study was to examine the expression of TNF-alpha protein during the onset of insulin resistance in maturing Sprague-Dawley (S-D) rats. Compared to 2 months, rats aged 5 and 12 months were glucose intolerant and fasting glucose was elevated at 12 months (p < 0.05). Compared to 2 months, insulin concentrations following glucose loading were elevated at 5 months (p < 0.05) and also at 12 months, but to a lesser degree. In isolated strips of soleus muscle, insulin-stimulated glucose transport was reduced by 38% and 59% between 2 and 5 months and between 2 and 12 months, respectively (p < 0.05), with no changes in basal transport. Insulin resistance was associated with decreased content of TNF-alpha protein in visceral and subcutaneous fat. TNF-alpha protein content was also decreased in tibialis anterior muscle, but was unchanged in soleus and red gastrocnemius muscles. Liver was the only tissue examined that showed an increase in TNF-alpha protein content. In vitro secretion of TNF-alpha protein was markedly reduced in explants of visceral and subcutaneous fat from mature, insulin-resistant animals, but TNF-alpha bioactivity in subcutaneous fat was maintained with age. These results indicate that the onset of insulin resistance in mature S-D rats is associated with reduced adipose expression of TNF-alpha. Our findings do not support the adipose-endocrine model of TNF-alpha in insulin resistance. Our findings do support a paracrine role for TNF-alpha or for a reduction in endogenous TNF-alpha inhibitors in insulin resistance.  相似文献   

9.
There is good evidence from cell lines and rodents that elevated protein kinase C (PKC) overexpression/activity causes insulin resistance. Therefore, the present study determined the effects of PKC activation/inhibition on insulin-mediated glucose transport in incubated human skeletal muscle and primary adipocytes to discern a potential role for PKC in insulin action. Rectus abdominus muscle strips or adipocytes from obese, insulin-resistant, and insulin-sensitive patients were incubated in vitro under basal and insulin (100 nM)-stimulated conditions in the presence of GF 109203X (GF), a PKC inhibitor, or 12-deoxyphorbol 13-phenylacetate 20-acetate (dPPA), a PKC activator. PKC inhibition had no effect on basal glucose transport. GF increased (P < 0.05) insulin-stimulated 2-deoxyglucose (2-DOG) transport approximately twofold above basal. GF plus insulin also increased (P < 0.05) insulin receptor tyrosine phosphorylation 48% and phosphatidylinositol 3-kinase (PI 3-kinase) activity approximately 50% (P < 0.05) vs. insulin treatment alone. Similar results for GF on glucose uptake were observed in human primary adipocytes. Further support for the hypothesis that elevated PKC activity is related to insulin resistance comes from the finding that PKC activation by dPPA was associated with a 40% decrease (P < 0.05) in insulin-stimulated 2-DOG transport. Incubation of insulin-sensitive muscles with GF also resulted in enhanced insulin action ( approximately 3-fold above basal). These data demonstrate that certain PKC inhibitors augment insulin-mediated glucose uptake and suggest that PKC may modulate insulin action in human skeletal muscle.  相似文献   

10.
Borst SE  Conover CF 《Life sciences》2005,77(17):2156-2165
In several strains of genetically obese and insulin resistant rodents, adipose tissue over expresses mRNA for tumor necrosis factor alpha (TNF-alpha). Our purpose was to determine whether tissue expression of TNF-alpha protein is elevated in rats that are made obese and insulin resistant by administration of a high-fat diet. Young Wistar rats weighing approximately 50 g were fed for 39 days with either normal rat chow (12.4% fat) or a high-fat diet (50% fat). After 33 days, glucose tolerance was assessed and after 39 days, insulin-stimulated transport of [3H]-2-deoxyglucose was assessed in isolated strips of soleus muscle. Rats on the high-fat diet consumed slightly fewer calories but became obese, displaying significant approximately 2-fold increases in the mass of both visceral and subcutaneous fat depots. High-fat feeding also caused a moderate degree of insulin resistance. Fasting serum insulin was significantly increased, as were insulin and glucose concentrations following glucose loading. In isolated strips of soleus muscle, the high-fat diet produced a trend toward a 33% decrease in the insulin-stimulated component of glucose transport (p=0.064). Western analysis of muscle, liver and fat revealed two forms of TNF-alpha, a soluble 17 Kd form (sTNF-alpha) and a 26 Kd membrane form (mTNF-alpha). Both sTNF-alpha and mTNF-alpha were relatively abundant in fat; whereas sTNF-alpha was the predominant form present in muscle and liver. High-fat feeding caused a significant 2-fold increase in muscle sTNF-alpha, along with a trend toward a 54% increase in visceral fat sTNF-alpha (p=0.055). TNF-alpha was undetectable in serum. We conclude that muscle over expression of TNF-alpha occurs during the development of diet-induced obesity and may, in part cause insulin resistance by an autocrine mechanism.  相似文献   

11.
The counterregulatory action of catecholamines on insulin-stimulated glucose transport and its relation to glucose transporter phosphorylation were studied in isolated rat adipose cells. Plasma membranes exhibiting reduced glucose transport activity were prepared as described previously (Joost, H. G., Weber, T. M., Cushman, S. W., and Simpson, I. A. (1986) J. Biol. Chem. 261, 10033-10036) from cells treated with insulin, and subsequently with isoproterenol and adenosine deaminase. In these membranes, transporter affinity for cytochalasin B binding was significantly reduced (KD = 133.5 +/- 14 versus 89.8 +/- 11 nM, means +/- S.E.) with no change in number of sites or immunoreactivity of the transporter on Western blots. Reconstituted plasma membrane transport was significantly lower with isoproterenol treatment (0.50 +/- 0.12 versus 0.97 +/- 0.27 nmol/mg protein/10 s). In contrast, transport activity reconstituted from corresponding intracellular transporters (from low density microsomes) was unchanged (5.4 +/- 2.2 versus 6.9 +/- 1.2 nmol/mg protein/10 s). Thus, the intrinsic activity change of the transporter produced by catecholamines appears to reflect a structural modification that is confined to the plasma membrane and not recycled into the intracellular compartment. In cells equilibrated with [32P]phosphate, neither insulin nor isoproterenol induced [32P]phosphate incorporation into the glucose transporter immunoprecipitated from plasma membranes. Conversely, phorbol 12-myristate 13-acetate stimulated significant incorporation of [32P]phosphate into the glucose transporter in insulin-stimulated cells without any change in plasma membrane transport activity or transporter concentration. Thus, the phosphorylation state of the glucose transporter does not seem to be involved in either signaling transporter translocation or triggering changes in transporter intrinsic activity.  相似文献   

12.
Elevation of plasma lactate levels induces peripheral insulin resistance, but the underlying mechanisms are unclear. We examined whether lactate infusion in rats suppresses glycolysis preceding insulin resistance and whether lactate-induced insulin resistance is accompanied by altered insulin signaling and/or insulin-stimulated glucose transport in skeletal muscle. Hyperinsulinemic euglycemic clamps were conducted for 6 h in conscious, overnight-fasted rats with or without lactate infusion (120 micromol x kg(-1) x min(-1)) during the final 3.5 h. Lactate infusion increased plasma lactate levels about fourfold. The elevation of plasma lactate had rapid effects to suppress insulin-stimulated glycolysis, which clearly preceded its effect to decrease insulin-stimulated glucose uptake. Both submaximal and maximal insulin-stimulated glucose transport decreased 25-30% (P < 0.05) in soleus but not in epitrochlearis muscles of lactate-infused rats. Lactate infusion did not alter insulin's ability to phosphorylate the insulin receptor, the insulin receptor substrate (IRS)-1, or IRS-2 but decreased insulin's ability to stimulate IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase activities and Akt/protein kinase B activity by 47, 75, and 55%, respectively (P < 0.05 for all). In conclusion, elevation of plasma lactate suppressed glycolysis before its effect on insulin-stimulated glucose uptake, consistent with the hypothesis that suppression of glucose metabolism could precede and cause insulin resistance. In addition, lactate-induced insulin resistance was associated with impaired insulin signaling and decreased insulin-stimulated glucose transport in skeletal muscle.  相似文献   

13.
1. The effects of aging on the sensitivity and responsiveness of glucose transport, lactate formation and glycogen synthesis to insulin were studied in the incubated stripped soleus muscle isolated from aging Sprague-Dawley and Wistar rats. 2. As Sprague-Dawley rats aged from 5 to 13 weeks, there were marked increases in the concentrations of insulin that were required for half-maximal stimulation (i.e. EC50 value, which is a measure of sensitivity) of glucose transport, lactate formation and glycogen synthesis. 3. In marked contrast, there were no alterations in sensitivities of any of these processes to insulin in soleus muscle prepared from Wistar rats aged between 6 and 12 weeks. 4. However, in soleus muscles from 85-week-old Wistar rats the rates of glycogen synthesis in response to basal, sub-maximal and maximal concentrations of insulin were markedly decreased. The insulin EC50 value of glycogen synthesis was increased 4-fold, but was unchanged for lactate formation. 5. The insulin-stimulated rates of glucose transport in soleus muscles from 5- or 85-week-old Wistar rats were not significantly different.  相似文献   

14.
The mechanisms by which insulin deficiency affects muscle glucose transport were investigated. Epitrochlearis muscles from rats with streptozotocin-induced diabetes and from controls were incubated in vitro for 0.5-14 h. The incubation was shown not to impair muscle energy stores or tissue oxygenation. Diabetes decreased basal 3-O-methylglucose transport by 40% (p less than 0.01), and insulin-stimulated (20 milli-units/ml) glucose transport capacity by 70% (p less than 0.001). In vitro incubation gradually normalized insulin responsiveness (3.77 +/- 0.38 before versus 8.97 +/- 0.65 mumol X ml-1 X h-1 after 12 h of incubation). Basal glucose transport remained significantly reduced. The reversal of the insulin responsiveness did not require the presence of rat serum and, furthermore, took place even in the absence of insulin. In fact, insulin responsiveness was higher after incubation (14 h) with no insulin than with 100 microunits/ml insulin (9.85 +/- 0.59 versus 8.06 +/- 0.59 mumol X ml-1 X h-1, p less than 0.05). Glucose at 30 mM did not affect the normalization of the insulin-stimulated glucose transport capacity, whereas incubation in serum from diabetic rats resulted in a slightly (26%) blunted reversal (7.60 +/- 0.39 versus 8.89 +/- 0.45 mumol X ml-1 X h-1 with diabetic versus control serum for 14 h, p less than 0.05; before incubation the value was 3.87 +/- 0.40). Inhibition of protein synthesis by cycloheximide blocked the normalization by 80%. These results suggest the presence in diabetic serum of some labile factor that might inhibit the glucose transport system. The results indicate that the decreased insulin-stimulated glucose transport capacity, in the insulin-deficient diabetic muscle, is not a direct consequence of the lack of insulin or of high glucose concentrations.  相似文献   

15.
It has been reported that benfluorex ameliorates the insulin resistance induced by high-fat feeding when its administration is initiated at the same time as the change in diet. Here we have examined whether benfluorex reverses insulin resistance when this is established in middle-aged rats chronically maintained on a high-fat diet. Untreated 12-month-old rats that had been subjected to a high-fat diet for the last 6 months showed markedly lower insulin-induced stimulation of 2-deoxyglucose uptake by strips of soleus muscle and a reduced expression of GLUT4 glucose carriers in skeletal muscle. However, animals subjected to the same protocol but treated with benfluorex during the last month of high-fat feeding showed marked improvement in insulin-stimulated glucose transport by soleus muscle. Benfluorex treatment caused a substantial increase in the content of GLUT4 protein in white muscle; however, GLUT4 levels in red muscle remained low. Our results indicate: (i) that benfluorex treatment in middle-aged rats reverses the insulin resistance induced by high-fat feeding in soleus muscle; (ii) benfluorex is active even when it is administered once the insulin-resistant state is already established; (iii) reversion of muscle insulin resistance by benfluorex can occur independently of modifications in GLUT4 protein expression.  相似文献   

16.
1. The effects of synthetic human amylin on basal and insulin-stimulated (100 and 1000 microunits/ml) rates of lactate formation, glucose oxidation and glycogen synthesis were measured in the isolated rat soleus muscle preparation incubated in the presence of various concentrations of glucose (5, 11 and 22 mM). 2. The rate of glucose utilization was increased by about 2-fold by increasing the glucose concentration from 5 to 22 mM. 3. Synthetic human amylin (10 nM) significantly inhibited (by 46-56%) glycogen synthesis, irrespective of the concentration of insulin or glucose present in the incubation medium. 4. Amylin (10 nM) did not affect insulin-stimulated rates of 2-deoxy[3H]glucose transport and phosphorylation. 5. Intraperitoneal administration of insulin (100 micrograms/kg) to rats in vivo stimulated the rate of [U-14C]glucose incorporation into glycogen in the diaphragm by about 80-fold. This rate was decreased (by 28%) by co-administration of amylin (66 micrograms/kg).  相似文献   

17.
Association of resistin with visceral fat and muscle insulin resistance   总被引:3,自引:0,他引:3  
Borst SE  Conover CF  Bagby GJ 《Cytokine》2005,32(1):39-44
Maturing Sprague-Dawley (S-D) rats develop obesity and skeletal muscle insulin resistance. To investigate the relationship between fat mass and insulin responses, we performed surgical removal of the epididymal and retroperitoneal depots of visceral adipose tissue (VF) or sham surgery (SHAM) in male rats aged 4 months. At sacrifice, 30 days later, the mass of visceral fat was 48% lower (p<0.05) in VF- compared to SHAM, while subcutaneous fat was essentially unchanged. VF- animals displayed increased insulin responses in isolated strips of skeletal muscle. Insulin-stimulated glucose transport was increased 28% in soleus muscle (p<0.05), with a trend toward a 31% increase in extensor digitorum longus muscle (p=0.058). Glucose tolerance was not significantly affected by surgical fat removal. In VF- animals, serum resistin was reduced 26% (p<0.05) and serum adiponectin was reduced 30% (p<0.05), with trends for reductions in IL-4 (58% reduction, p=0.084) and IL-6 (56% reduction, p=0.123). TNF-alpha, leptin and free fatty acids (NEFAs) were unchanged. We conclude that in maturing S-D rats, increased visceral adiposity leads to an increase in systemic release in resistin and possibly interleukins. Elevation of circulating cytokines may play a role in the development of muscle insulin resistance.  相似文献   

18.
In an attempt to probe the effect of beta-endorphin on insulin resistance, we used Wistar rats that were fed fructose-rich chow to induce insulin resistance. Insulin action on glucose disposal rate (GDR) was measured using the hyperinsulinemic euglycemic clamp technique, in which glucose (variable), insulin (40 mU/kg/min), and beta-endorphin (6 ng/kg/min) or vehicle were initiated simultaneously and continued for 120 min. A marked reduction in insulin-stimulated GDR was observed in fructose-fed rats compared to normal control rats. Infusion of beta-endorphin reversed the value of GDR, which was inhibited by naloxone and naloxonazine each at doses sufficient to block opioid mu-receptors. Opioid mu-receptors may therefore be activated by beta-endorphin to improve insulin resistance. Next, soleus muscle was isolated to investigate the effect of beta-endorphin on insulin signals. Insulin resistance in rats induced by excess fructose was associated with the impaired insulin receptor (IR), tyrosine autophosphorylation, and insulin receptor substrate (IRS)-1 protein content in addition to the significant decrease in IRS-1 tyrosine phosphorylation in soleus muscle. This impaired glucose transportation was also due to signaling defects that included an attenuated p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3-kinase) and Akt serine phosphorylation. However, IR protein levels were not markedly changed in rats with insulin resistance. beta-endorphin infusion reversed the fructose-induced decrement in the insulin-signaling cascade with increased GDR. Apart from IR protein levels, infusion of beta-endorphin reversed the decrease in protein expression for the IRS-1, p85 regulatory subunit of PI3-kinase, and Akt serine phosphorylation in soleus muscle in fructose-fed rats. The decrease in insulin-stimulated protein expression of glucose transporter subtype 4 (GLUT 4) in fructose-fed rats returned to near-normal levels after beta-endorphin infusion. Infusion of beta-endorphin may improve insulin resistance by modulating the insulin-signaling pathway to reverse insulin responsiveness.  相似文献   

19.
Glucose transport is regarded as the principal rate control step governing insulin-stimulated glucose utilization by skeletal muscle. To assess this step in human skeletal muscle, quantitative PET imaging of skeletal muscle was performed using 3-O-methyl-[11C]glucose (3-[11C]OMG) in healthy volunteers during a two-step insulin infusion [n = 8; 30 and 120 mU.min(-1).m(-2), low (LO) and high (HI)] and during basal conditions (n = 8). Positron emission tomography images were coregistered with MRI to assess 3-[11C]OMG activity in regions of interest placed on oxidative (soleus) compared with glycolytic (tibialis anterior) muscle. Insulin dose-responsive increases of 3-[11C]OMG activity in muscle were observed (P < 0.01). Tissue activity was greater in soleus than in tibialis anterior (P < 0.05). Spectral analysis identified that two mathematical components interacted to shape tissue activity curves. These two components were interpreted physiologically as likely representing the kinetics of 3-[11C]OMG delivery from plasma to tissue and the kinetics of bidirectional glucose transport. During low compared with basal, there was a sixfold increase in k3, the rate constant attributed to inward glucose transport, and another threefold increase during HI (0.012 +/- 0.003, 0.070 +/- 0.014, 0.272 +/- 0.059 min(-1), P < 0.001). Values for k3 were similar in soleus and tibialis anterior, suggesting similar kinetics for transport, but compartmental modeling indicated a higher value in soleus for k1, denoting higher rates of 3-[11C]OMG delivery to soleus than to tibialis anterior. In summary, in healthy volunteers there is robust dose-responsive insulin stimulation of glucose transport in skeletal muscle.  相似文献   

20.
The nonapeptide angiotensin II (ANG II) induces vasoconstriction via the ANG II type I receptor, while its splice product ANG-(1-7) elicits an antihypertensive effect via the Mas receptor. Although a critical role of ANG II in the etiology of skeletal muscle insulin resistance is well documented, the role of the ANG-(1-7)/Mas receptor axis in this context is poorly understood. Therefore, we determined whether ANG-(1-7) is effective in ameliorating the negative effects of ANG II on insulin-stimulated insulin signaling and glucose transport activity in isolated soleus muscle from normotensive lean Zucker rats. ANG II alone (500 nM for 2 h) decreased insulin-stimulated glucose transport activity by 45% (P < 0.05). In the presence of 500-1000 nM ANG-(1-7), insulin-stimulated glucose transport activity in muscle exposed to ANG II improved by ∼30% (P < 0.05). Moreover, ANG-(1-7) treatment increased Akt Ser473 phosphorylation (47%, P < 0.05) without an effect on glycogen synthase kinase-3β Ser9 phosphorylation. The dependence of ANG-(1-7) action on the Mas receptor was assessed using A779 peptide, a selective Mas receptor antagonist. The positive effects of ANG-(1-7) on insulin-stimulated glucose transport activity and Akt Ser473 phosphorylation in soleus muscle were completely prevented in presence of 1000 nM A779. In conclusion, the present study demonstrates that ANG-(1-7), via a Mas receptor-dependent mechanism, can ameliorate the inhibitory effect of ANG II on glucose transport activity in mammalian skeletal muscle, associated with enhanced Akt phosphorylation. These results provide further evidence supporting the targeting of the renin-angiotensin system for interventions designed to reduce insulin resistance in skeletal muscle tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号