首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major objectives of the present work were focused on assessing the antioxidant capacities of two hydroxyl-substituent Schiff bases, 2-((o-hydroxylphenylimino)methyl)phenol (OSAP) and 2-((p-hydroxylphenylimino)methyl)phenol (PSAP) either used alone or in combination with some familiar water-soluble antioxidants i.e. 6-hydroxyl-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox) and L-ascorbic acid (VC), and lipophilic ones i.e. alpha-tocopherol (TOH) and L-ascorbyl-6-laurate (VC-12). 2,2'-Azobis(2-amidinopropane hydrochloride) (AAPH). Induced hemolysis of human erythrocytes functioned as the evaluation experimental system in this research. The present findings showed that either OSAP or PSAP not only was an antioxidant with high activity in protecting erythrocytes against AAPH-induced hemolysis concentration-dependently, but can also protect erythrocytes by acting with Trolox, TOH, VC and VC-12 synergistically. Based on chemical kinetic deduction, the number of trapping peroxyl radicals, n, of the above-mentioned antioxidants can be calculated in relation to Trolox that traps two peroxyl radicals; thus, TOH can trap 3.83 peroxyl radicals, VC-12 traps 2.87 and VC can only trap 1.08. As for OSAP and PSAP, 8.71 and 13.7 peroxyl radicals can be trapped, respectively, indicating that they were the most efficient inhibitors against AAPH-induced hemolysis. Moreover, the total number of peroxyl radicals trapped by OSAP+Trolox, OSAP+TOH, OSAP+VC and PSAP+VC were higher than the sum of the above individual antioxidant used alone, demonstrating that a mutual promotive effect existed in the above mixed antioxidants. In contrast, owing to the fact that the total number of peroxyl radicals trapped by OSAP+VC-12, PSAP+Trolox, PSAP+TOH and PSAP+VC-12 were less than the sum of the above individual antioxidant used alone, a mutual antagonistic effect was suggested in these combinative usages. This information may be helpful in the pharmaceutical application of two Schiff bases.  相似文献   

2.
The major objective of this work was to explore the quantitative structure-activity relationship (QSAR) of hydroxyl-substituent Schiff bases in protecting human erythrocytes against 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH)- induced hemolysis, in which 10 Schiff bases including 4-phenyliminomethylphenol (PIH); 4-((4-hydroxybenzylidene) amino)phenol (PAH); 2-methoxy-4-((4-hydroxyphenylimino)methyl)phenol (PMH); 4-((furan-2-ylmethylene)amino) phenol (FAH); 4-((4-N,N-dimethylaminobenzylidene)amino)phenol (PDH); 2-((4-N,N-dimethylaminobenzylidene)amino) phenol (ODH); 2-(naphthalene-1-yliminomethyl)phenol (NAH); 2-(benzyliminomethyl)phenol (BPH); 1,4-di((2-hydroxyphenylimino) methyl)benzene (DOH); 1,4-di((4-hydroxyphenylimino)methyl)benzene DPH, were available for this in vitro experimental system. The results revealed that the radical-scavenging activity of the --OH attached to the para position of methylene in Schiff base was much lower than that attached to the ortho position of the N atom. The large conjugate system and low steric hindrance in the framework of Schiff base benefit the Schiff base to trap radicals. Meanwhile, since a Schiff base, even without any substituent, can also play an antioxidative role in this experimental system, the QSAR results suggest that hydroxyl-substituent Schiff bases are potential drugs in the treatment of radical-related diseases, and provide more information for designing novel drugs.  相似文献   

3.
The abilities of dihydrolipoic acid (DHLA) to scavenge peroxynitrite (ONOO?), galvinoxyl radical, 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonate) cation radical (ABTS+?), and 2,2′‐diphenyl‐1‐picrylhydrazyl radical (DPPH) were higher than those of lipoic acid (LA). The effectiveness of DHLA to protect methyl linoleate against 2,2′‐azobis(2‐amidinopropane hydrochloride) (AAPH)‐induced oxidation was about 2.2‐fold higher than that of LA, and DHLA can retard the autoxidation of linoleic acid (LH) in the β‐carotene‐bleaching test. DHLA can also trap ~0.6 radicals in AAPH‐induced oxidation of LH. Moreover, DHLA can scavenge ~2.0 radicals in AAPH‐induced oxidation of DNA and AAPH‐induced hemolysis of erythrocytes, whereas LA can scavenge ~1.5 radicals at the same experimental conditions. DHLA can protect erythrocytes against hemin‐induced hemolysis, but accelerate the degradation of DNA in the presence of Cu2+. Therefore, the antioxidant capacity of –SH in DHLA is higher than S‐S in LA. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 25:216–223, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20378  相似文献   

4.
Factors affecting the free radical scavenging behavior of chitosan sulfate   总被引:1,自引:0,他引:1  
Scavenging activity of hydroxyethyl chitosan sulfate (HCS) against 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and carbon-centered radical species were studied using electron spin resonance (ESR) spectroscopy. In addition, its antioxidant activity to retard lipid peroxidation was also evaluated in a linoleic acid model system. HCS could scavenge DPPH (33.78%, 2.5 mg/mL) and carbon-centered radicals (67.74%, 0.25 mg/mL) effectively. However, chitosan sulfate did not exhibit any scavenging activity against hydroxyl radicals, but increased its generation. This was different from the published literature and was presumed due to the loss of chelating ability on Fe2+. This assumption could further confirm from the results obtained for Fe2+-ferrozine method that upon sulfation chitooligosaccharides lost its chelation properties. Therefore, HCS can be identified as antioxidant that effectively scavenges carbon centered radicals to retard lipid peroxidation.  相似文献   

5.
The emergence of multi-drug resistant pathogens in infectious disease conditions accentuates the need for the design of new classes of antimicrobial agents that could defeat the multidrug resistance problems. As a new class of molecules, the Heterocyclic Schiff base is of considerable interest, owing to their preparative accessibility, structural flexibilities, versatile metal chelating properties, and inherent biological activities. In the present study, CAM-B3LYP/LANL2DZ and M062X/DEF2-TZVP level of density functional method is used to explore the complexation of chalcone based Schiff base derivatives by Co2+, Ni2+, Cu2+, and Zn2+ metal ions. The HL(1-3)-Co2+, HL(1-3)-Ni2+ and HL(1-3)-Zn2+ complexes formed the distorted tetrahedral geometry. Whereas, the HL(1-3)-Cu2+ complexes prefers distorted square-planar geometry. The BSSE corrected interaction energies of the studied complexes reveals that Cu2+ ion forms the most stable complexes with all three chalcone based Schiff bases. Of the three Schiff bases studied, the HL2 Schiff base acts as a potent chelating agent and forms the active metal complexes than the HL1 and HL3 Schiff bases. Further, the strength of the interaction follows the order as Cu2+?>?Ni2+?>?Co2+?>?Zn2+. The QTAIM analysis reveals that the interaction between the metal ions and coordinating ligand atoms are electrostatic dominant. The metal interaction increases the π-delocalisation of electrons over the entire chelate. Hence, the antimicrobial activity of the metal complexes is more effective than the free Schiff bases. Moreover, the HL(1-3)-Cu2+ complexes shows higher antimicrobial activities than the other complexes studied.  相似文献   

6.
The radioprotective and anticlastogenic potential of a phenol derivative monoterpene thymol(TOH), against whole-body gamma radiation was studied in Swiss albino mice. Acute toxicity of TOH, with an LD(50(14)) of 1134.03mg/kgbwt., was observed when administered intra-peritoneally (i.p.). The radioprotective potential of TOH was evaluated using the optimal dose of 10mg/kgbwt. TOH, which increased the LD(50/30) by 2.17Gy and resulted in a dose reduction factor (DRF) of 1.25. A significant (p<0.01) reduction in micronucleated, polychromatic erythrocytes (PCE), normochromatic erythrocytes (NCE), and an increased PCE/NCE ratio was also observed after administration of 10mg/kg.b.wt. TOH prior to gamma radiation, indicating its antigenotoxic effect. TOH pre-treatment significantly (p<0.01) elevated reduced glutathione, glutathione-S-transferase, catalase, and superoxide dismutase levels and decreased lipid peroxidation levels in mouse liver homogenates at 24 and 48h after exposure to 4.5Gy of radiation. Further, TOH treatment before exposure to 7.5Gy of gamma radiation resulted in a significant (p<0.01) increase in hematological parameters at various post-treatment time points, with increased numbers of endogenous spleen colonies as well. The histological observations indicated a decline in villus heights and crypt numbers in mouse jejunum and were accompanied by a significant decrease in bone marrow nucleated cells in the irradiated group, which was almost normalized by pre-treatment with TOH. Our study clearly documents the antioxidant, anticlastogenic and radioprotective potentials of TOH, which may be attributed to several possible mechanisms, such as normalization of intracellular antioxidant levels and free radical scavenging activities by TOH.  相似文献   

7.
Antioxidant action of Mn2+ on radical-mediated lipid peroxidation without added iron in microsomal lipid liposomes and on iron-supported lipid peroxidation in phospholipid liposomes or in microsomes was investigated. High concentrations of Mn2+ above 50 microM inhibited 2,2'-azobis (2-amidinopropane) (ABAP)-supported lipid peroxidation without added iron at the early stage, while upon prolonged incubation, malondialdehyde production was rather enhanced as compared with the control in the absence of Mn2+. However, in a lipid-soluble radical initiator, 2,2'-azobis (2,4-dimethyl-valeronitrile) (AMVN)-supported lipid peroxidation of methyl linoleate in methanol Mn2+ apparently did not scavenge lipid radicals and lipid peroxyl radicals, contrary to a previous report. At concentrations lower than 5 microM, Mn2+ competitively inhibited Fe(2+)-pyrophosphate-supported lipid peroxidation in liposomes consisting of phosphatidylcholine with arachidonic acid at the beta-position and phosphatidylserine dipalmitoyl, and reduced nicotinamide adenine dinucleotide phosphate (NADPH)-supported lipid peroxidation in the presence of iron complex in microsomes. Iron reduction responsible for lipid peroxidation in microsomes was not influenced by Mn2+.  相似文献   

8.
The interaction of dietary carotenoids with radical species   总被引:4,自引:0,他引:4  
Dietary carotenoids react with a wide range of radicals such as CCl3O2*, RSO2*, NO2*, and various arylperoxyl radicals via electron transfer producing the radical cation of the carotenoid. Less strongly oxidizing radicals, such as alkylperoxyl radicals, can lead to hydrogen atom transfer generating the neutral carotene radical. Other processes can also arise such as adduct formation with sulphur-centered radicals. The oxidation potentials have been established, showing that, in Triton X-100 micelles, lycopene is the easiest carotenoid to oxidize to its radical cation and astaxanthin is the most difficult. The interaction of carotenoids and carotenoid radicals with other antioxidants is of importance with respect to anti- and possibly pro-oxidative reactions of carotenoids. In polar environments the vitamin E (alpha-tocopherol) radical cation is deprotonated (TOH*+ --> TO* + H+) and TO* does not react with carotenoids, whereas in nonpolar environments such as hexane, TOH*+ is converted to TOH by hydrocarbon carotenoids. However, the nature of the reaction between the tocopherol and various carotenoids shows a marked variation depending on the specific tocopherol homologue. The radical cations of the carotenoids all react with vitamin C so as to "repair" the carotenoid.  相似文献   

9.
Probucol, 4.4'-[(1-methylethylidene)bis(thio)]bis-[2,6-bis(1.1-dimethyl)phenol], is a lipid regulating drug whose therapeutic potential depends on its antioxidant properties. Probucol and x-tocopherol were quantitatively compared in their ability to scavenge peroxyl radicals generatcd by the thermal decomposition of the lipid-soluble azo-initiator 2,2'-azo-bis(2,4-dimethyl-valeronitrile), AMVN, in dioleoylphos-phatidylcholine (DOPC) liposomes. Probucol showed 15-times lower peroxyl radical scavenging efficiency than x-tocopherol as measured by the effects on AMVN-induced luminol-dependent chemiluminescence. We suggest that probucol cannot protect x-tocopherol against its loss in the course of oxidation, although probucol is known to prevent lipid peroxidation in membranes and lipoproteins. In human low density lipoproteins (LDL) ESR signals of the probucol phenoxyl radical were detected upon incubation with lipoxygenase + linolenic acid or AMVN. Ascorbate was shown to reduce probucol radicals. Dihydro-lipoic acid alone was not able to reduce the probucol radical but in the presence of both ascorbate and dihydrolipoic acid a synergistic effect of a stepwise reduction was observed. This resulted from ascorbate-dependent reduction of probucol radicals and dihydrolipoic acid-dependent reduction of ascorbyl radicals. The oxidized form of dihydrolipoic acid, thioctic acid, did not affect probucol radicals either in the presence or in the absence of ascorbate.  相似文献   

10.
Like superoxide dismutase (SOD), human ceruloplasmin (Cp) scavenges superoxide anion radicals injected into the solution with the aid a high-voltage generator, hydrogen peroxide being the product of reaction. The O2-/H2O2 ratio is close to 2:1. The dismutase activity of Cp is about 1500 times lower than that of Cu, Zn-SOD isolated from human erythrocytes. The dismutation of O2- accomplished by SOD, "free" copper ions, native Cp or partly copper-depleted Cp, is inhibited with equal efficiency by cyanide. All the copper ions of the multicopper catalytic center of Cp are not essentially required for the dismutation of O2-, since the enzyme depleted of all type 2 Cu2+ and partly of type 1 Cu2+ lost none of its dismutase activity. Type 1 copper ions of Cp seem to play the leading role in the one-electron transfer occurring upon dismutation of O2-.  相似文献   

11.
The antioxidant properties of 1,2,3,4‐tetra‐hydrocarbazole, 6‐methoxy‐1,2,3,4‐tetrahydrocar‐bazole (MTC), 2,3‐dimethylindole, 5‐methoxy‐2,3‐dimethylindole, and indole were investigated in the case of hemolysis of human erythrocytes and oxidative damage of DNA induced by 2,2′‐azobis(2‐amidinopropane hydrochloride) (AAPH), respectively. The aim of this work was to explore the influence of methoxy, methyl, and cyclohexyl substituents on the antioxidant activities of indole derivatives. These indole derivatives were able to protect erythrocytes and DNA in a concentration‐dependent manner. The alkyl‐substituted indole can protect erythrocytes and DNA against AAPH‐induced oxidation. Especially, the structural features of cyclohexyl and methoxy substituents made MTC the best antioxidant among the indole derivatives used herein. Finally, the interaction between these indole derivatives and 2,2′‐azinobis(3‐ethylbenzothiazoline‐6‐sulfonate) radical cation and 2,2′‐diphenyl‐1‐picrylhydrazyl, respectively, provided direct evidence for these indole derivatives to scavenge radicals and emphasized the importance of electron‐donating groups for the free radical–scavenging activity of indole derivatives. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:273–279, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20289  相似文献   

12.
《Free radical research》2013,47(5):265-276
Probucol, 4.4′-[(1-methylethylidene)bis(thio)]bis-[2,6-bis(1.1-dimethyl)phenol], is a lipid regulating drug whose therapeutic potential depends on its antioxidant properties. Probucol and x-tocopherol were quantitatively compared in their ability to scavenge peroxyl radicals generatcd by the thermal decomposition of the lipid-soluble azo-initiator 2,2′-azo-bis(2,4-dimethyl-valeronitrile), AMVN, in dioleoylphos-phatidylcholine (DOPC) liposomes. Probucol showed 15-times lower peroxyl radical scavenging efficiency than x-tocopherol as measured by the effects on AMVN-induced luminol-dependent chemiluminescence. We suggest that probucol cannot protect x-tocopherol against its loss in the course of oxidation, although probucol is known to prevent lipid peroxidation in membranes and lipoproteins. In human low density lipoproteins (LDL) ESR signals of the probucol phenoxyl radical were detected upon incubation with lipoxygenase + linolenic acid or AMVN. Ascorbate was shown to reduce probucol radicals. Dihydro-lipoic acid alone was not able to reduce the probucol radical but in the presence of both ascorbate and dihydrolipoic acid a synergistic effect of a stepwise reduction was observed. This resulted from ascorbate-dependent reduction of probucol radicals and dihydrolipoic acid-dependent reduction of ascorbyl radicals. The oxidized form of dihydrolipoic acid, thioctic acid, did not affect probucol radicals either in the presence or in the absence of ascorbate.  相似文献   

13.
The inductive interaction between class II+ APC and Th cell was investigated in a human system at the chemical level. The study set out to test the predictions of a model of Ag presentation in which epsilon-amino groups and carbonyl groups at the surface of APC and T cell react covalently to form reversible intercellular Schiff bases. In the experimental system of oxidative mitogenesis this process results in T cell activation. If oxidative mitogenesis is an experimental amplification of a physiologic process, and intercellular Schiff base formation is essential in Ag presentation, then it should be possible to inhibit Ag presentation by prior formation of Schiff bases on the surface of participating cells. In this situation Ag-induced T cell activation and T cell activation induced by periodate oxidation should invariably behave in the same way. It should also be possible to demonstrate Schiff base formation occurring between accessory cells and lymphocytes directly and definitively by means of specific reduction with sodium cyanoborohydride. Aldehyde treatment of accessory cells should prevent this intercellular Schiff base formation. In this study the following observations were made. 1) Both Ag-specific and periodate-induced T cell activation were inhibited by aldehyde treatment of class II+ accessory cells. 2) Noncross-linking donors of carbonyl groups other than aldehydes inhibited Ag-specific T cell activation. 3) Brief, low-dose treatment of T cells with aldehydes inhibited Ag-dependent T-cell activation. 4) Exogenous amino groups in the form of lysine and other amino acids inhibited both Ag-specific and periodate-induced T-cell activation. 5) The weak reducing agent sodium cyanoborohydride which is specific for Schiff bases at neutral pH inhibited both Ag-induced and periodate-induced T cell activation. Responses to PHA were markedly prolonged by this reagent. 6) Schiff base formation occurring between accessory cells and lymphocytes was detected directly and definitively by means of radiolabeling with NaCNB(3H)3 at neutral pH. These data are consistent with the view that the formation of reversible covalent Schiff bases between ligands on APC and T cell is an essential process in Ag-induced T cell activation.  相似文献   

14.
Nitroxide radicals are an emerging class of interesting compounds with versatile antioxidant and radioprotective properties. All literature studies have so far concentrated on compounds bearing only one nitroxide function. Here, we now investigate and compare the radical scavenging behaviour and antioxidant activity of aromatic indolinonic and aliphatic piperidine bis-nitroxides, i.e compounds bearing two nitroxide functions. Their corresponding mono-derivatives were also studied for comparison. Radical scavenging activity was investigated using EPR and UV-Vis spectroscopy by following spectral changes in acetonitrile of the nitroxides in the presence of alkyl and peroxyl radicals generated, respectively, under anoxic or aerobic conditions from thermal decomposition of AMVN [2,2'-azobis(2,4-di-methylvaleronitrile)]. Antioxidant activity of the nitroxides was evaluated by monitoring conjugated dienes (CD) formation during methyl linoleate micelles peroxidation and by measuring carbonyl content in oxidized bovine serum albumin (BSA). The results show that: (a) each nitroxide moiety in bis-nitroxides scavenges radicals independent of each other; (b) aliphatic nitroxides do not scavenge peroxyl radicals, at least under the experimental conditions used here, whereas indolinonic aromatic ones do: their stoichiometric number is 1.14 and 2.17, respectively, for mono- and bis-derivatives; (c) bis-nitroxides are roughly twice more efficient at inhibiting lipid peroxidation compared to their corresponding mono-derivatives. Although this study provides only comparative information on the relative radical-scavenging abilities of mono- and bis-nitroxides, it helps in understanding further the interesting reactivity of these compounds especially with regards to peroxyl radicals where many controversies in the literature exist.  相似文献   

15.
Nitroxide radicals are an emerging class of interesting compounds with versatile antioxidant and radioprotective properties. All literature studies have so far concentrated on compounds bearing only one nitroxide function. Here, we now investigate and compare the radical scavenging behaviour and antioxidant activity of aromatic indolinonic and aliphatic piperidine bis-nitroxides, i.e compounds bearing two nitroxide functions. Their corresponding mono-derivatives were also studied for comparison. Radical scavenging activity was investigated using EPR and UV–Vis spectroscopy by following spectral changes in acetonitrile of the nitroxides in the presence of alkyl and peroxyl radicals generated, respectively, under anoxic or aerobic conditions from thermal decomposition of AMVN [2,2′-azobis(2,4-di-methylvaleronitrile)]. Antioxidant activity of the nitroxides was evaluated by monitoring conjugated dienes (CD) formation during methyl linoleate micelles peroxidation and by measuring carbonyl content in oxidized bovine serum albumin (BSA). The results show that: (a) each nitroxide moiety in bis-nitroxides scavenges radicals independent of each other; (b) aliphatic nitroxides do not scavenge peroxyl radicals, at least under the experimental conditions used here, whereas indolinonic aromatic ones do: their stoichiometric number is 1.14 and 2.17, respectively, for mono- and bis-derivatives; (c) bis-nitroxides are roughly twice more efficient at inhibiting lipid peroxidation compared to their corresponding mono-derivatives. Although this study provides only comparative information on the relative radical-scavenging abilities of mono- and bis-nitroxides, it helps in understanding further the interesting reactivity of these compounds especially with regards to peroxyl radicals where many controversies in the literature exist.  相似文献   

16.
Alpha-tocopheryl quinone is a metabolite of alpha-tocopherol (TOH) in vivo. The antioxidant action of its reduced form, alpha-tocopheryl hydroquinone (TQH2), has received much attention recently. In the present study, the antioxidative activity of TQH2 was studied in various systems in vitro and compared with that of ubiquinol-10 (UQH2) or TOH to obtain the basic information on the dynamics of the antioxidant action of TQH2. First, their hydrogen-donating abilities were investigated in the reaction with galvinoxyl, a stable phenoxyl radical, and TQH2 was found to possess greater second-order rate constant (1.0 x 10(4) M(-1) s(-1)) than UQH2 (6.0 x 10(3) M(-1) s(-1)) and TOH (2.4 x 10(3) M(-1) s(-1)) at 25 degrees C in ethanol. The stoichiometric numbers were obtained as 1.9, 2.0, and 1.0 for TQH2, UQH2, and TOH, respectively, in reducing galvinoxyl. Second, their relative reactivities toward peroxyl radicals were assessed in competition with N,N'-diphenyl-p-phenylenediamine (DPPD) and found to be 6.0 (TQH2), 1.9 (UQH2), and 1.0 (TOH). Third, their antioxidant efficacies were evaluated in the oxidation of methyl linoleate in organic solvents and in aqueous dispersions. The antioxidant potency decreased in the order TOH > UQH2 > TQH2, as assessed by either the extent of the reduction in the rate of oxidation or the duration of inhibition period. The reverse order of their reactivities toward radicals and their antioxidant efficacies was interpreted by the rapid autoxidation of TQH2 and UQH2, carried out by hydroperoxyl radicals. Although neither TQH2 nor UQH2 acted as a potent antioxidant by itself, they acted as potent antioxidants in combination with TOH. TQH2 and UQH2 reduced alpha-tocopheroxyl radical to spare TOH, whereas TOH suppressed the autoxidation of TQH2 and UQH2. In the micelle oxidation, the antioxidant activities of TQH2, UQH2, and TOH were similar, whereas 2,2,5,7,8-pentamethyl-6-chromanol exerted much more potent efficacy than TQH2, UQH2, or TOH. These results clearly show that the antioxidant potencies against lipid peroxidation are determined not only by their chemical reactivities toward radicals, but also by the fate of an antioxidant-derived radical and the mobility of the antioxidant at the microenvironment.  相似文献   

17.
Nitecapone [3-(3,4-dihydroxy-5-nitrophenyl)methylene-2,4-pentanedione] [OR-462] is a catechol-O-methyltransferase inhibitor with gastroprotective properties. Recently, its antioxidant properties have been discovered: It scavenges peroxyl radicals (ROO.) and thus spares glutathione. Further examination of the properties of nitecapone demonstrated a remarkable ability of this compound to act as an antioxidant: (1) to scavenge ROO. in solution with a stoichiometry factor of 2; (2) to scavenge ROO. in membranes; (3) to inhibit lipid peroxidation; (4) to act as a competitive inhibitor for xanthine oxidase with Ki of 8.8 microM; (5) to scavenge O2- with a second order kinetic rate constant of 1.0 x 10(4) M-1 s-1; and (6) to scavenge HO.. Nitecapone also interacts with oxidation product of ascorbate to participate in recycling of vitamin E. Thus, nitecapone potentially is an effective therapeutic antioxidant, and the use of this compound in a combination with other antioxidants may be beneficial.  相似文献   

18.
Oceans are among the richest natural sources of many bioactive compounds. Several of these compounds have shown pharmacological activities for many diseases. Dendrodoine (5-[(3-N-dimethylamino)-1,2,4-thiadiazolyl]-3-indanyl methanone) is an alkaloid extracted from the marine tunicate Dendrodoa grossularia. Aminothiazoles have a wide range of biological activities including anti-tumor and antioxidant properties. The aim of our study was to examine the antioxidant ability of an aminothiazole derivative, dendrodoine analogue (DA) [(4-amino-5-benzoyl-2-(4-methoxy phenylamino) thiazole] which has been chemically synthesized and is similar to dendrodoine. In all the biochemical assays used in our study, corresponding to different levels of protection, DA showed concentration dependent antioxidant ability. DA (3.07 microM) showed an ability to inhibit 2,2'-azobis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical formation to the extent of 0.17 microM of 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox). The ferric complex reducing ability of 3.07 microM DA was equivalent to 110 microM Trolox. 3.07 microM DA gave 84% protection against deoxyribose degradation, a measure of hydroxyl radical scavenging. DA also has an ability to scavenge NO radical, 3.07 microM DA effecting 20% scavenging. Concentration dependent inhibition of lipid peroxidation and protein oxidation induced by 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and ascorbate-Fe2+ was observed with low concentrations of DA (1.5-3.07 microM). Mechanistic studies using pulse radiolysis revealed that DA scavenges peroxyl radicals with a bimolecular rate constant of 3 x 10(8)M(-1)s(-1). Moreover, the initially formed nitrogen-centered radical gets transformed into sulfur-centered radical before furnishing any final product. Our results indicated that DA can be a free radical scavenger and potential antioxidant for future application.  相似文献   

19.
Spin Trapping Using 2,2-Dimethyl-2H-Imidazole-1-Oxides   总被引:1,自引:0,他引:1  
The ability of novel cyclic nitrones, 4-substituted 2,2-dimethyl-2H-imidazole-1-oxides (IMO's) to trap a variety of short-lived free radicals has been investigated using ESR spectroscopy. IMO's scavenge oxygen-, carbon- and sulfur-derived free radicals to give persistent nitroxides. Compared to the spin trap 5,5-dimethyl-pyrroline-1-oxide, a higher lifetime of hydroxyl radical adducts and a higher selectivity related to the trapping of carbon-centered radicals was found. A reaction between IMO's and superoxide was not observed. ESR parameters of 4-carboxyl-2,2-dimethyl-2H-imidazole-1-oxide (CIMO) spin adducts are highly sensitive to the structure of the trapped radical, e.g., different spectra were detected with radicals derived from Na2SO3 and NaHSO3. From the data obtained, a successful application of these new spin traps in biological systems can be expected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号