首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the use of detergents and successive column chromatographies, Tetrahymena b-type cytochrome was purified from microsomes to a specific content of 36.0 nmol per mg of protein. The purified form showed a single band on SDS-polyacrylamide gel with molecular weight of 22,000. The spectral properties of the reduced b-type cytochrome, the α-peak of which is situated at 560 nm and asymmetric with a shoulder at 556 nm, was different from that of rat liver microsomal cytochrome b5. However, it was reducible by NADH in the presence of NADH-cytochrome b5 reductase purified from rat liver microsomes.The results indicated that the microsomal b-type cytochrome should be designated as cytochrome b5 of a ciliated protozoan, Tetrahymena pyriformis.  相似文献   

2.
An NADH:(acceptor) oxidoreductase (EC 1.6.99.3) of human erythrocyte membrane was purified by DEAE-cellulose anion exchange, hydroxyapatite adsorption, and 5′-ADP-hexane-agarose affinity chromatographies after solubilization with Triton X-100. The purified reductase preparation was homogeneous and estimated to have an apparent molecular weight of 36,000 on SDS-polyacrylamide slab gel electrophoresis and of 144,000 on Sephadex G-200 gel filtration in the presence of 0.2% Triton X-100, whereas a soluble NADH-cytochrome b5 reductase of human erythrocyte had a molecular weight of 32,000 by both methods, indicating the existence of a distinct membrane reductase. Digestion of the membrane reductase with cathepsin D yielded a new polypeptide chain which gave the same relative mobility as the soluble reductase on SDS-polyacrylamide slab gel electrophoresis. The membrane enzyme, the cathepsin-digested enzyme, and the soluble enzyme all cross-reacted with the antibody to rat liver microsomal NADH-cytochrome b5 reductase. The enzyme had one mole FAD per 36,000 as a prosthetic group and could reduce K3Fe(CN)6, 2,6-dichlorophenolindophenol, cytochrome c, methemoglobin-ferrocyanide complex, cytochrome b5 and methemoglobin via cytochrome b5 when NADH was used as an electron donor. NADPH was less effective as an electron donor than NADH. The specific activity of the purified enzyme was 790 μmol ferricyanide reduced min?1 mg?1 and the turnover number was 40,600 mol ferricyanide reduced min?1 mol?1 FAD at 25 °C. The apparent Km values for NADH and cytochrome b5 were 0.6 and 20 μm, respectively, and the apparent V value was 270 μmol cytochrome b5 reduced min?1 mg?1. These kinetic properties were similar to those of the soluble NADH-cytochrome b5 reductase. The results indicate that the NADH:(acceptor) oxidoreductase of human erythrocyte membrane could be characterized as a membrane NADH-cytochrome b5 reductase.  相似文献   

3.
ONTOGENETIC CHANGES OF PROTEINS OF ENDOPLASMIC RETICULUM   总被引:1,自引:0,他引:1       下载免费PDF全文
The proteins of the smooth and rough endoplasmic reticulum from fetal, immature, and adult male rats were compared after incorporation of two radioactively labeled precursors, 14C-labeled amino acids and δ-aminolevulinic acid-3H by means of gel electrophoresis. The labeling patterns indicated that protein components present in two major electrophoretic bands underwent significant synthesis in fetal tissue while three actively incorporating protein bands were noted in adult tissue. Although the uptake of the amino acids-14C decreased for the smooth and rough elements of the endoplasmic reticulum as a whole during liver development, the qualitative patterns were not significantly different in adult and fetal livers. The over-all incorporation (disintegrations per minute per milligram protein) of the heme precursor into the smooth and rough elements also did not change with development. However, a change was noted in the distributional electrophoretic patterns with development. The estimation of molecular weight (by disc electrophoresis) and the incorporation of the heme precursor suggested the similarity of the two major protein bands to cytochrome P-450 and cytochrome b5, components of the endoplasmic reticulum, thought to be involved in the mixed-function oxidase system. The evidence indicated that in fetal liver, at a time when the oxidase capability was low, the amino acid incorporation into these two protein groups was the same as in the adult. The incorporation of the heme moiety, however, was different, decreasing in the cytochrome b5 region and increasing in the cytochrome P-450 region during development. These results correlate with the increase in oxidase activity associated with liver development.  相似文献   

4.
An antibody preparation elicited against purified, lysosomal-solubilized NADH-cytochrome b5 reductase from rat liver microsomes was shown to interact with methemoglobin reductase of human erythrocytes by inhibiting the rate of erythrocyte cytochrome b5 reduction by NADH. The ferricyanide reductase activity of the enzyme was not inhibited by the antibody, suggesting that the inhibition of methemoglobin reductase activity may be due to interference with the binding of cytochrorme b5 to the flavoprotein. Under conditions of limiting concentrations of flavoprotein, the antibody inhibited the rate of methemoglobin reduction in a reconstituted system consisting of homogeneous methemoglobin reductase and cytochrome b5 from human erythrocytes. This inhibition was due to the decreased level of reduced cytochrome b5 during the steady state of methemoglobin reduction while the rate of methemoglobin reduction per reduced cytochrome b5 stayed constant, suggesting that the enzyme was not concerned with an electron transport between the reduced cytochrome b5 and methemoglobin.An antibody to purified, trypsin-solubilized cytochrome b5 from rat liver microsomes was shown to inhibit erythrocyte cytochrome b5 reduction by methemoglobin reductase and NADH to a lesser extent than microsomal cytochrome b5 preparations from rat liver (trypsin solubilized or detergent solubilized) and pig liver (trypsin solubilized). The results presented establish that soluble methemoglobin reductase and cytochrome b5 of human erythrocytes are immunochemically similar to NADH-cytochrome b5 reductase and cytochrome b5 of liver microsomes, respectively.  相似文献   

5.
Incubation in the presence of NADPH and molecular oxygen of 14C-labeled polychlorinated biphenyls (PCBs) and two tetrachlorobiphenyl (TCB) isomers with a reconstituted system containing NADPH-cytochrome P-450 reductase and cytochrome P-450, both purified from liver microsomes of phenobarbital(PB)-pretreated rabbits, led to covalent binding of radioactive metabolites of PCBs and TCBs to the protein components of the system. A rabbit liver cytosol fraction added to the system provided more binding sites for the activated metabolites and thus increased the extent of binding markedly. The binding reaction depended absolutely on the reductase, cytochrome P-450 and NADPH, and required dilauroyl phosphatidylcholine and sodium cholate for maximal activity. A further stimulation of the binding was attained by including cytochrome b5 in the reconstituted system. Four forms of cytochrome P-450, purified from liver microsomes of PB- and 3-methylcholanthrene(MC)-treated rabbits and rats, were used to reconstitute the PCB- and TCB-metabolizing systems, and it was found that PB-inducible forms of the cytochrome from both animals were more active than those inducible by MC in catalyzing the PCB- and TCB-binding reaction. Sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis indicated that, in the system containing the reductase, cytochrome P-450 and cytochrome b5, PCB metabolites bound to the reductase and cytochrome P-450, but not to cytochrome b5. In the presence of the liver cytosol fraction, the binding took place to many cytosolic proteins in addition to the reductase and cytochrome P-450.  相似文献   

6.
Cytochrome P-450 was purified from microsomes of anaerobically grown yeast to a specific content of 12–15 nmoles per mg of protein with a yield of 10–30%. Upon sodium dodecylsulfate/polyacrylamide gel electrophoresis, the purified preparation yielded a major protein band having a molecular weight of about 51,000 together with a few faint bands. It was free from cytochrome b5, NADH-cytochrome b5 reductase, and NADPH-cytochrome c (P-450) reductase. In the oxidized state it exhibited a low-spin type absorption spectrum, and its reduced CO complex showed a Soret peak at 447–448 nm. It was reducible by NADPH in the presence of an NADPH-cytochrome c reductase preparation purified from yeast microsomes. Its conversion to the cytochrome P-420 form was much slower than that of hepatic cytochrome P-450.  相似文献   

7.
《Insect Biochemistry》1989,19(5):481-488
Cytochrome P-450, cytochrome b5 and cytochrome P-450 reductase were purified from house fly abdomens using high performance liquid chromatography (HPLC). Using a new technique, cytochrome P-450 was separated from the bulk of other proteins after polyethylene glycol fractionation and hydrophobic interaction chromatography (HIC) using a phenyl-5PW column. This technique resulted in 91% recovery of the cytochrome P-450s in a single concentrated fraction that also contained the remaining cytochrome b5 and cytochrome P-450 reductase activity. Further purification by anion exchange on a DEAE-5SW column resolved the cytochrome P-450s, cytochrome b5 and cytochrome P-450 reductase into individual fractions. The ion exchange step yielded one fraction that contained a high specific content of P-450 (14.4 nmol/mg protein). This cytochrome P-450 fraction ran as a single band at 54.3 kDa in sodium dodecyl sulfate polyacrylamide (SDS-PAGE) gel electrophoresis and had a carboxy ferrocytochrome absorbance maximum at 447 nm.Further purification of the anion exchange cytochrome b5 fraction, by C8 reverse phase HPLC, resulted in a cytochrome b5 fraction with a specific content of 51.8 nmol/mg protein and an apparent molecular mass of 19.7 kDa by SDS-PAGE. The anion exchange HPLC fraction containing the cytochrome P-450 reductase activity was further purified by NADP-agarose affinity chromatography. This step yielded cytochrome P-450 reductase with an apparent molecular mass of 72 kDa.  相似文献   

8.
NADPH-cytochrome c reductase of yeast microsomes was purified to apparent homogeneity by solubilization with sodium cholate, ammonium sulfate fractionation, and chromatography with hydroxylapatite and diethylaminoethyl cellulose. The purified preparation exhibited an apparent molecular weight of 83,000 on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The reductase contained one molecule each of flavin-adenine dinucleotide and riboflavin 5′-phosphate, though these were dissociative from the apoenzyme. The purified reductase showed a specific activity of 120 to 140 μmol/min/mg of protein for cytochrome c as the electron acceptor. The reductase could reduce yeast cytochrome P-450, though with a relatively slow rate. The reductase also reacted with rabbit liver cytochrome P-450 and supported the cytochrome P-450-dependent benzphetamine N-demethylation. It can, therefore, be concluded that the NADPH-cytochrome c reductase is assigned for the cytochrome P-450 reductase of yeast. The enzyme could also reduce the detergent-solubilized cytochrome b5 of yeast. So, this reductase must contribute to the electron transfer from NADPH to cytochrome b5 that observed in the yeast microsomes.  相似文献   

9.
Hen liver microsomes contained 0.20 nmol of cytochromeb5 per mg of protein. Upon addition of NADH about 95% cytochrome b5 was reduced very fast with a rate constant of 206 s?1When ferricyanide was added to the reaction system the cytochrome stayed in the oxidized form until the ferricyanide reduction was almost completed. The reduced cytochrome b5 in microsomes was oxidized very rapidly by ferricyanide. The rate constant of 4.5 × 108m?1 s?1, calculated on the basis of assumption that ferricyanide reacts directly with the cytochrome, was found to be more than 100 times higher than that of the reaction between ferricyanide and soluble cytochrome b5. To explain the results, therefore, the reverse electron flow from cytochrome b5 to the flavin coenzyme in microsomes was assumed.By three independent methods the specific activity of the microsomes was measured at about 20 nmol of NADH oxidized per s per mg of protein and it was concluded that the reduction of the flavin coenzyme of cytochrome b5 reductase by NADH is rate-limiting in the NADH-cytochrome b5 and NADH-ferricyanide reductase reactions of hen liver microsomes. In the NADH-ferricyanide reductase reaction the apparent Michaelis constant for NADH was 2.8 μm and that for ferricyanide was too low to be measured. In the NADH-cytochrome c reductase reaction the maximum velocity was 2.86 nmol of cytochrome c reduced per s per mg of protein and the apparent Michaelis constant for cytochrome c was 3.8 μm.  相似文献   

10.
CYTOCHROME b5 is a haem-containing protein in the microsomes of liver tissue. It interacts specifically with a flavo-protein, cytochrome b5 reductase, which catalyses the transfer of electrons from NADH to the haem iron of the cytochrome1. The microsomal cytochrome b5 system has been implicated in fatty acid desaturation reactions2 and a similar system in erythrocytes may catalyse the reduction of methaemoglobin3. Calf liver cytochrome b5, solubilized by pancreatic lipase, has a molecular weight of 11,000 and consists of ninety-three amino-acids in the sequence shown in Fig. 1 (refs. 4 and 5). The haem group is non-covalently bound to the protein and can be removed reversibly by acid acetone treatment6.  相似文献   

11.
A rabbit antiserum was prepared against rat liver microsomal cytochrome b5, and utilized in demonstrating the participation of this cytochrome in the microsomal stearyl-CoA desaturation reaction. The antiserum inhibited the NADH-cytochrome c reductase activity of rat liver microsorncs, but it did not inhibit either NADH-ferricyanide or NADPH-cytochrome c reductase activity of the microsomes. Thus, the inhibitory effect of the antiserum on the microsomal electron-transferring reactions seemed to be specific to those which require the participation of cytochrome b5.The NADH-dependent and NADPH-dependent desaturations of stearyl CoA by rat liver microsomes were strongly inhibited by the antiserum. The reduction of cytochrome b5 by NADH-cytochrome b5 reductase as well as the reoxidation of the reduced cytochrome b3 by the desaturase, the terminal cyanide-sensitive factor of the desaturation system, was also strongly inhibited by the antiserum. When about 90%, of cytochrome b5 was removed from rat liver microsomes by protease treatment, the desaturation activity of the microsomes became much more sensitive to inhibition by the antiserum. These results confirmed our previous conclusion that the reducing equivalent for the desaturation reaction is transferred from NAD(P)H to the cyanidesensitive factor mainly via cytochrome b5 in the microsomal membranes.  相似文献   

12.
Studies of cytochrome synthesis in rat liver   总被引:3,自引:1,他引:2       下载免费PDF全文
The incorporation of radioactive amino acids and of δ-amino[2,3-3H2]laevulinate into rat liver cytochromes b5 and c and cytochrome oxidase has been examined with and without protein-synthesis inhibitors. Cycloheximide promptly inhibits labelling of both haem and protein for cytochrome c in parallel fashion. Although incorporation of 14C-labelled amino acid into microsomal cytochrome b5 is also rapidly inhibited, cycloheximide incompletely inhibits haem labelling of cytochrome b5 and cytochrome a+a3, and inhibition occurs only after repeated antibiotic injections. The possibility of apo-protein pools, or of haem exchange, with a rapidly renewed `free' haem pool, is considered. Consistent with this model is the observation of non-enzymic haem exchange in vitro between cytochrome b5 and methaemoglobin. Chloramphenicol, injected intravenously over 5h, results in a 20–40% decrease in incorporation of δ-amino[2,3-3H2]laevulinate into haem a+a3 and haem of cytochromes b5 and c. With the dosage schedule of chloramphenicol studied, amino acid labelling of total liver protein and of cytochrome c was not inhibited. Similarly, ferrochelatase activity was not decreased.  相似文献   

13.
Cytochrome P-450 was purified from phenobarbital-treated guinea pigs to a specific content of 19.8 nmoles per mg of protein, and was free of cytochrome b5 and NADPH-cytochrome c reductase. The purified cytochrome P-450 gave a single protein band on sodium dodecylsulfate-polyacrylamide gel electrophoresis, and an apparent molecular weight of about 49,000 was estimated. Benzphetamine N-demethylation activity could be reconstituted by mixing the purified cytochrome, NADPH-cytochrome c reductase and phosphatidylcholine.  相似文献   

14.
Cytochrome b5 is the main electron acceptor of cytochrome b5 reductase. The interacting domain between both human proteins has been unidentified up to date and very little is known about its redox properties modulation upon complex formation. In this article, we characterized the protein/protein interacting interface by solution NMR and molecular docking. In addition, upon complex formation, we measured an increase of cytochrome b5 reductase flavin autofluorescence that was dependent upon the presence of cytochrome b5. Data analysis of these results allowed us to calculate a dissociation constant value between proteins of 0.5 ± 0.1 μM and a 1:1 stoichiometry for the complex formation. In addition, a 30 mV negative shift of cytochrome b5 reductase redox potential in presence of cytochrome b5 was also measured. These experiments suggest that the FAD group of cytochrome b5 reductase increase its solvent exposition upon complex formation promoting an efficient electron transfer between the proteins.  相似文献   

15.
Studies have been made of the morphology, enzyme activity and protein composition of liver endoplasmic reticulum in rats exposed to acute doses of the carcinogen, 2-acetylaminofluorene (2-AAF). Electron microscopic examination revealed numerous ultrastructural changes in the hepatocyte; most consistent alterations were the disorganisation of endoplasmic reticulum system with apparent increase of smooth endoplasmic reticulum. Administration of 2-AAF to rats immediately depressed microsomal glucose-6-phosphatase activity and eventually induced epoxide hydratase activity 6–7-fold over control activity. The induction was time-dependent and maximal rates of induction were observed at dosages greater than 40 mg/kg body wt. The treatment also induced cytochrome b5 content, NADH and NADPH cytochrome c reductase activities (1.0–1.5-fold). Only very small changes in the total content of cytochrome P-450 were noted. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) of microsomal proteins from 2-AAF pretreated animals showed time-dependent induction of two polypeptides which differed slightly in migration, in the region of Mr = 48 000; the faster-migrating induced polypeptide has been identified as epoxide hydratase. Two-dimensional PAGE analysis of microsomal proteins from 2-AAF exposed rats showed a reproducible deletion of a protein with molecular weight in the region of 67 000. The basis for the alterations in the protein composition of endoplasmic reticulum in response to 2-AAF treatment is discussed.  相似文献   

16.
The role of NADH-cytochrome b5 reductase and cytochrome b5 as electron carriers in NADH-supported electron transport reactions in rat liver microsomes has been examined by measuring three enzyme activities: NADH-cytochrome P-450 reductase, NADH-peroxidase, and NADH-cytochrome c reductase. The first two reactions are known to involve the participation of an NADH-specific reductase and cytochrome P-450 whereas the third requires the reductase and cytochrome b5. Antibody prepared against NADH-cytochrome b5 reductase markedly inhibited the NADH-peroxidase and NADH-cytochrome c reductase activities suggesting the involvement of this NADH-specific reductase in these reactions. Liver microsomes prepared from phenobarbital-pretreated rats were digested with subtilisin to remove cytochrome b5 and the submicrosomal particles were collected by centrifugation. The specific content of cytochrome b5 in the digested particles was about 5% of that originally present in liver microsomes and all three enzyme activities showed similar decreases whereas NADH-ferricyanide reductase activity (an activity associated with the flavoenzyme NADH-cytochrome b5 reductase) remained virtually unchanged. Binding of an excess of detergent-purified cytochrome b5 to the submicrosomal particles at 37 °C for 20 min followed by centrifugation and enzymic measurements revealed a striking increase in the three enzyme activities. Further evidence for cytochrome b5 involvement in the NADH-peroxidase reaction was the marked inhibition by antibody prepared against the hemoprotein. These results suggest that in microsomal NADH-supported cytochrome P-450-dependent electron transport reactions, cytochrome b5 functions as an intermediate electron carrier between NADH-cytochrome b5 reductase and cytochrome P-450.  相似文献   

17.
An experimental system has been devised for induction of nitrate reductase in suspensions of wild type Paracoccus denitrificans incubated with limited aeration in the presence of azide, nitrate or nitrite. Azide promoted maximum synthesis of enzyme, accompanied by formation of excess b-type cytochrome; the level of enzyme attained with nitrate was less and c-type cytochrome predominated in the membrane. The nitrate reductase was solubilized with deoxycholate from membranes of azide-induced cells and was identified as a major polypeptide M r =150,000 by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Mutants strains lacking nitrate reductase activity were isolated on the basis of resistance to chlorate and mutant M-1 was examined in detail. When incubated in the cell suspension system M-1 formed a membrane protein M r =150,000 similar to that attributed to nitrate reductase in the wild type. Maximum formation of the protein by M-1 occurred without inducer and it was accompanied by synthesis of excess b-type cytochrome. The observations with wild type and M-1 indicate that nitrate reductase protein and b-type cytochrome are coregulated and that the active enzyme has a role in regulating its own synthesis.Non-standard Abbreviations SDS sodium dodecyl sulphate - PAGE polyacrylamide gel electrophoresis - DOC sodlum deoxycholate  相似文献   

18.
Tatsuo Omata  Norio Murata 《BBA》1984,766(2):395-402
The cytochrome and prenylquinone compositions were compared for cytoplasmic membranes and thylakoid membranes from the cyanobacterium (blue-green alga) Anacystis nidulans. Reduced-minus-oxidized difference absorption spectra at ?196°C indicated that the thylakoid membranes contained photosynthetic cytochromes such as cytochrome ?, cytochrome b-559 and cytochrome b6, while cytochromes c-549 and c-552 were detected spectrophotometrically only after their release by sonic oscillation. The cytoplasmic membrane preparation contained one or two low-potential cytochrome(s) with α-band maxima at 553 and 559 nm at ?196°C, which differed from the cytochromes in the thylakoid membranes. A cytochrome specific to the cytoplasmic membranes was also found by heme-staining after lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Both types of membranes contained the three prenylquinones plastoquinone-9, phylloquinone and 5′-monohydroxyphylloquinone, but in different proportions.  相似文献   

19.
1. Cytochrome b5 is released from rat liver microsomes by both proteolytic enzymes and by treatments that disrupt phospholipids. Cytochrome P-420 is only released to a marked extent by treatments that disrupt phospholipids. 2. Cytochrome b5 was isolated in a pure state from both the rough and smooth fractions of rat liver microsomes after treatment with trypsin, and was shown to contain two cytochrome components with identical spectral properties. 3. Amino acid analyses of the two components are presented, together with peptide `fingerprint' patterns of tryptic digests of the two components. 4. Studies based on the direct isolation of cytochrome b5 after administration of a single dose of radioactive amino acid to rats demonstrate that the cytochrome is synthesized initially in the rough fraction of microsomes and only subsequently appears in the smooth fraction. 5. Isolated rat liver microsomes are capable of incorporating radioactive amino acids into cytochrome b5 under standard conditions. 6. Under these conditions the amino acid is incorporated into peptide linkage in the cytochrome.  相似文献   

20.
Administration of allylisopropylacetamide (AIA) or CCl4 to rats previously treated with phenobarbital leads to a rapid decrease in cytochrome P450 within 1 hr. The amount of cytochrome b5 and NADPH cytochrome c reductase in liver microsomes remains unchanged following AIA treatment. In contrast, CCl4 administration causes a decrease in total microsomal protein thus leading to a net loss in cytochrome b5 and NADPH cytochrome c reductase. By using 3H-δ-aminolevulinic acid to label microsomal cytochrome P450 heme, the effect of AIA and CCl4 on this cytochrome was shown to be caused by destruction of preexisting CO-binding pigment and not from inhibition of synthesis. In addition, the breakdown products of cytochrome P450 heme accumulate in the liver after AIA or CCl4 treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号