首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
U. Kutschera 《Planta》1991,184(1):61-66
The relationship between growth, change in cell osmotic pressure and accumulation of osmotic solutes was investigated in hypocotyls of sunflower (Helianthus annum L.) seedlings. During growth in darkness the osmotic pressure decreased by 50% between days 2 and 6 after sowing. After irradiation of dark-grown seedlings with continuous white light (WL) an inhibition of hypocotyl growth was measured, but the osmotic pressure of the growing cells was not lower than in the dark-grown control. Growth in darkness and after WL irradiation was accompanied by an increase in the amount of osmotic substances (soluble sugars) which was proportional to the increase in length of the organ. During growth in continuous WL the cell osmotic pressure decreased by 45 % between days 2 and 6 after sowing. The transfer of WL-grown seedlings to darkness (“re-etiolation”) resulted in a rapid acceleration of hypocotyl growth, but the cell osmotic pressure was the same as that of the WL grown control. Growth in continuous WL was accompanied by a corresponding accumulation of osmotic substances (soluble sugars). The transition from WL to darkness resulted in an enhanced accumulation of osmotica and an increase in cell-wall extensibility. The results indicate that the relative maintenance of cell osmotic pressure during rapid hypocotyl growth in darkness is caused by an enhanced accumulation of soluble sugars into the growing cells of the organ.  相似文献   

2.
I. R. MacDonald  J. W. Hart 《Planta》1985,163(4):549-553
Regional growth in vertical and horizontal etiolated sunflower hypocotyls from which the apical hook tissue had been either partly or wholly excised, was measured 24 h later, the regions having been demarcated with resin beads. Removal of the cotyledons (an excision which included the distal end of the shoot apex) had little effect on growth during this period but excision of the apical hook significantly reduced growth. In vertically orientated seedlings, removal of half of the hook severely reduced growth in all other growing regions and removal of the entire hook totally inhibited growth. This inhibition of growth was not a consequence of the removal of the region of growth but a consequence of the removal of a region on which growth was dependent. In horizontal seedlings, the situation was more complex inasmuch as a horizontal orientation itself induced growth in previously non-growing regions. This new growth was localised in its extent and was not as severely affected by progressive excision of the hook as was growth in vertical seedlings. The results are discussed in terms of overall growth co-ordination in the hypocotyl.  相似文献   

3.
B. G. Kang  P. M. Ray 《Planta》1969,87(3):193-205
Summary The opening of the hypocotyl hook in bean seedlings is due to a rapid elongation of cells on the inner side of the hook elbow. Red light promotes hook opening by inducing this cell elongation.Opening is inhibited by low concentrations of indoleacetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D), and higher concentrations of these auxins cause a closure of the hook. In darkness, opening is induced slightly by p-chlorophenoxyisobutyric acid (PCIB), whereas in red light this auxin antagonist promotes opening only when IAA is added simultaneously to inhibit opening.The amount of diffusible auxin released by the hook tissue is not affected by red illumination that is sufficient to induce maximal hook opening.Gibberellic acid (GA) promotes the hook opening. The magnitude of its effect is, however, rather small, especially in darkness. (2-Chloroethyl)-trimethylammonium chloride (CCC) and 2-isopropyl-4-(trimethylammonium-chloride)-5-methylphenyl piperidine-1-carboxylate (Amo-1618) inhibit hook opening in red light, and this inhibition is completely overcome by addition of GA.Cytokinins and abscisic acid at rather high concentrations inhibit hook opening in light but produce no significant effect in darkness.Hook opening is promoted by Ca++ and K+, and notably by Co++ and Ni++.It is concluded that 1. endogenous gibberellin assists in hook opening, but light does not act by changing the gibberellin level; 2. light does not act by decreasing the endogenous auxin level; and 3. cytokinins or abscisic acid do not seem to have a special role in the response.  相似文献   

4.
Dark-grown Arabidopsis seedlings develop an apical hook by differential cell elongation and division, a process driven by cross-talk between multiple hormones. Auxins, ethylene and gibberellins interact in the formation of the apical hook. In the light, a similar complexity of hormonal regulation has been revealed at the level of hypocotyl elongation. Here, we describe the involvement of brassinosteroids (BRs) in auxin- and ethylene-controlled processes in the hypocotyls of both light- and dark-grown seedlings. We show that BR biosynthesis is necessary for the formation of an exaggerated apical hook and that either application of BRs or disruption of BR synthesis alters auxin response, presumably by affecting auxin transport, eventually resulting in the disappearance of the apical hook. Furthermore, we demonstrate that ethylene-stimulated hypocotyl elongation in the light is largely controlled by the same mechanisms as those governing formation of the apical hook in darkness. However, in the light, BRs appear to compensate for the insensitivity to ethylene in hls mutants, supporting a downstream action of BRs. Hence, our results indicate that HLS1, SUR1/HLS3/RTY1/ALF1 and AMP1/HPT/COP2/HLS2/PT act on the auxin-ethylene interaction, rather than at the level of BRs. A model for the tripartite hormone interactions is presented.  相似文献   

5.
Summary The long-term effects of white light (WL) on epidermal cell elongation and the mechanical properties and ultrastructure of cell walls were investigated in the subapical regions of hypocotyls of sunflower seedlings (Helianthus annuus L.) that were grown in darkness. Upon transition to WL a drastic inhibition of epidermal cell elongation was observed. However, the mechanical properties of the inner tissues (cortex, vascular bundles, and pith) were unaffected by WL. Thus, the light-induced decrease in cell wall plasticity measured on entire stems occurs exclusively in the peripheral tissues (epidermis and 2 to 3 subepidermal cell layers).An electronmicroscopic investigation of the epidermal cell walls showed that they are of the helicoidal type with the direction of microfibrils monotonously changing during deposition. This cell wall type was identified by the appearance of arced patterns of microfibrils in cell walls sectioned oblique to the plane of their synthesis. WL irradiation did not change the periodicity of this pattern nor the thickness of the lamellae. Thus, the inhibition of cell elongation was not caused or accompanied by a shift in the direction of microfibril deposition in the growth-limiting outer tissues. However, cell wall thickness, the number of lamellae and hence the amount of cellulose oriented parallel and transverse to the longitudinal cell axis increased in WL. This may account for the effect of WL on the reduction of cell wall plasticity and growth.Abbreviations D darkness - PATAg periodic acid-thiocarbohydracide-silver protein - WL white light  相似文献   

6.
Cytokinins inhibit hypocotyl elongation in darkness but have no obvious effect on hypocotyl length in the light. However, we found that cytokinins do promote hypocotyl elongation in the light when ethylene action is blocked. A 50% increase in Arabidopsis thaliana (L.) Heynh. hypocotyl length was observed in response to N6-benzyladenine (BA) treatment in the presence of Ag+. The level of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid was strongly increased, indicating that ethylene biosynthesis was up-regulated by treatment with cytokinin. Furthermore, the effects of cytokinins on hypocotyl elongation were also tested using a series of mutants in the cascade of the ethylene-signal pathway. In the ethylene-insensitive mutants etr1-3 and ein2-1, cytokinin treatment resulted in hypocotyl lengths comparable to those of wild-type seedlings treated with both Ag+ and BA. A similar phenotypical response to cytokinin was observed when auxin transport was blocked by -naphthylphthalamic acid (NPA). Applied cytokinin largely restored cell elongation in the basal and middle parts of the hypocotyls of NPA-treated seedlings and at the same time abolished the NPA-induced decrease in indole-3-acetic acid levels. Our data support the hypothesis that, in the light, cytokinins interact with the ethylene-signalling pathway and conditionally up-regulate ethylene and auxin synthesis.  相似文献   

7.
  • The domestic sunflower (Helianthus annuus L. cv. ‘Giganteus’) has been used since the 19th century as a model plant for the study of seedling development in darkness and white light (WL) (scoto‐ versus photomorphogenesis). However, most pertinent studies have focused on the developmental patterns of the hypocotyl and cotyledons, whereas the root system has been largely ignored.
  • In this study, we analysed entire sunflower seedlings (root and shoot) and quantified organ development in the above‐ and belowground parts of the organism under natural (non‐sterile) conditions.
  • We document that seedlings, raised in moist vermiculite, are covered with methylobacteria, microbes that are known to promote root development in Arabidopsis. Quantitative data revealed that during photomorphogenesis in WL, the root system expands by 90%, whereas stem elongation is inhibited, and hook opening/cotyledon expansion occurs. Root morphogenesis may be mediated via imported sucrose provided by the green, photosynthetically active cotyledons. This hypothesis is supported by the documented effect of sucrose on the induction of lateral root initials in sunflower cuttings. Under these experimental conditions, phytohormones (auxin, cytokinin, brassinolide) exerted little effect on root and cotyledon expansion, and no hormone‐induced initiation of lateral roots was observed.
  • It is concluded that sucrose not only acts as an energy source to fuel cell metabolism but is also a shoot‐derived signalling molecule that triggers root morphogenesis.
  相似文献   

8.
Apical hook is a simple curved structure formed at the upper part of hypocotyls when dicot seeds germinate in darkness.The hook structure is transient but essential for seedlings’ survival during soil emergence due to its efficient protection of the delicate shoot apex from mechanical injury.As a superb model system for studying plant differential growth,apical hook has fascinated botanists as early as the Darwin age,and significant advances have been achieved at both the morphological and molec...  相似文献   

9.
Cell elongation and cell division in elongating lettuce hypocotyl sections   总被引:1,自引:1,他引:0  
The roles of cell division and cell elongation in the growth of sections excised from hypocotyls of lettuce (Lactuca sativa L. cv. Arctic) were investigated. Elongation of sections incubated in the light is inhibited compared to dark-grown sections and this inhibition is reversed by gibberellic acid (GA3). The elongation of both dark-grown and GA3-treated, light-grown sections can be enhanced by 10mM KCl. Under all conditions of incubation, elongation growth is greatest in the uppermost quarter of the hypocotyl section while the basal quarter does not elongate. In darkness the two apical segments of sections marked into four equal parts grow at the same rate, while in light, growth of the apical segment exceeds that of the second segment. Cell division in cortical or epidermal cells, as measured by mitotic index or cell number, is not affected by illumination conditions nor by GA3 or KCl treatments. Although -irradiation and FUDR pretreatment eliminate or cause a marked reduction in cell division in the excised hypocotyl, sections from seeds irradiated with -rays or incubated in 5-fluorodeoxyuridine elongate in response to GA3 and KCl treatment as do sections from non-pretreated controls. Therefore, since neither GA3 nor darkness affect celldivision activity and since treatments which eliminate or significantly reduce cell division do not affect growth, we conclude that the effect of GA3 and darkness in this material is to increase cell elongation.Abbreviations FUDR 5-fluorodeoxyuridine - GA(s) gibberellin(s) - GA3 gibberellic acid  相似文献   

10.
We examined the distribution and the immunohistochemical localization of yieldin in etiolated cowpea seedlings with an anti-yieldin antibody. An immunoblotting analysis revealed that the yieldin was located in the aerial organs (plumule, epicotyl and hypocotyl) but not in the roots. The intensity of the yieldin signal in the hypocotyls was highest in the apical pre-elongation region (the hook region) and decreased toward the elongated mature base indicating that the yieldin disappeared with the ceasing of cell elongation. Tissue-print immunoblotting analysis using hypocotyls in different germination stages supports this view because the apical yieldin-rich regions, just beneath the cotyledonary node (the hook and rapidly elongating regions), acropetally migrated together with hypocotyl elongation. Immunohistochemical microscopy demonstrated that yieldin was localized in the cell walls of the cortex and epidermis of the germ axes. The present results are consistent with the view that yieldin participates in the regulation of cell wall yielding during elongation growth.  相似文献   

11.
Summary The cell cycle of an arbuscular mycorrhizal fungus,Glomus versiforme, was determined by flow cytometric analysis of nuclei isolated from spores and mycorrhizal roots of leek, and by immunogold staining after bromodeoxyuridine (BrdU) uptake by DNA. The aims of our work were to establish: (i) whether there are changes in ploidy during fungal growth and morphogenesis, (ii) when and where the cell cycle is activated. Our results demonstrate that nuclei isolated from quiescent spores ofG. versiforme are arrested in the GO/G1 phase (99.2%), whereas fungal nuclei from mycorrhizal roots are in the synthetic (S) (10.1%) and G2/M phase (3.9%). Nuclei undergoing DNA synthesis were detected in situ after BrdU uptake. Labelled nuclei were observed in intercellular hyphae and in large arbuscular trunks. This paper demonstrates that colonization of an arbuscular mycorrhizal fungus is linked to activation of its cell cycle.Abbreviations AM fungi arbuscular mycorrhizal fungi - BrdU 5-bromo-2-deoxyuridine - PI propidium iodide - DAPI 4,6-diamidino-2-phenylindole  相似文献   

12.
Summary This study provides evidence thatGigaspora margarita replicates its nuclear DNA, even in the absence of a host plant. Three experimental approaches were used: (i) static cytofluorimetry to quantify the DNA content, (ii) pulse treatments with bromodeoxyuridine (BrdU), which is an analogue of thymidine, to reveal nuclei undergoing DNA synthesis, and (iii) ultrastructural observations to study changes in chromatin morphology during the fungal cell cycle. A slight second peak of approximately twice the value of a major peak was found by cytofluorimetry, showing that a small number of nuclei had entered in cycle during in vitro development. Nuclei which had incorporated BrdU were observed after pulses of 24 h; nuclei with condensed chromatin were also apparent at this time. The results demonstrate thatG. margarita has all the metabolic pathways needed to replicate its nuclear DNA even in the absence of the host, suggesting that more complex mechanisms inhibit the extended growth in vitro of arbuscular mycorrhizal fungi.Abbreviations AM-fungi arbuscular mycorrhizal fungi - A.U. arbitrary units - BrdU 5-bromo-2-deoxyuridine - DAPI 4,6-diamidino-2-phenylindole - UV ultraviolet light  相似文献   

13.
E. Allan  A. Trewavas 《Planta》1985,165(4):493-501
Calmodulin and NAD kinase were extracted from serial developmental sections of the pea root apex. Highly purified samples of calmodulin were assayed by NAD-kinase activation, and whole-cell extracts were examined by two-dimensional polyacrylamide gel electrophoresis. Calmodulin was found to vary 17-fold in concentration over the apical 2 mm, being high in the region of the root cap and meristem, falling rapidly at the base of the meristem during early stages of rapid cell elongation. The rate of decline was different between stele and cortex. Except for a minor increase in concentration 2.5–5 mm from the apex, which coincides with the region of localised meristematic activity during initiation of lateral root primordia, the concentration of calmodulin remained at the lower level throughout the more basal sections of the apical 10 mm. In-vitro NAD-kinase activity was found to increase 17-fold per cell over the apical 30 mm, almost entirely as the result of an increase in calmodulin-dependent activity. Quantitative estimates of both calmodulin and NAD kinase were found to be highly dependent on extraction procedures.Abbreviation EGTA ethylene glycol-bis (-aminoethyl ether)-N,N,N,N-tetraacetic acid  相似文献   

14.
U. Kutschera 《Planta》1990,181(3):316-323
The relationship between growth and increase in cell-wall material (wall synthesis) was investigated in hypocotyls of sunflower seedlings (Helianthus annuus L.) that were either grown in the dark or irradiated with continuous white light (WL). The peripheral three to four cell layers comprised 30–50% of the entire wall material of the hypocotyl. The increase in wall material during growth in the dark and WL, respectively, was larger in the inner tissues than in the peripheral cell layers. The wall mass per length decreased continuously, indicating that wall thinning occurs during growth of the hypocotyl. When dark-grown seedlings were transfered to WL, a 70% inhibition of growth was observed, but the increase in wall mass was unaffected. Likewise, the composition of the cell walls (cellulose, hemicellulose, pectic substances) was not affected by WL irradiation. Upon transfer of dark-grown seedlings into WL a drastic increase in wall thickness and a concomitant decrease in cell-wall plasticity was measured. The results indicate that cell-wall synthesis and cell elongation are independent processes and that, as a result, WL irradiation of etiolated hypocotyls leads to a thickening and mechanical stiffening of the cell walls.  相似文献   

15.
Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.  相似文献   

16.
Regulation of differential growth in the apical hook of Arabidopsis.   总被引:12,自引:0,他引:12  
Arabidopsis seedlings develop a hook-like structure at the apical part of the hypocotyl when grown in darkness. Differential cell growth processes result in the curved hypocotyl hook. Time-dependent analyses of the hypocotyl showed that the apical hook is formed during an early phase of seedling growth and is maintained in a sequential phase by a distinct process. Based on developmental genetic analyses of hook-affected mutants, we show that the hookless mutants (hls1, cop2) are involved in an early aspect of hook development. From time-dependent analyses of ethylene-insensitive mutants, later steps in hook maintenance were found to be ethylene sensitive. Regulation of differential growth was further studied through examination of the spatial pattern of expression of two hormone-regulated genes: an ethylene biosynthetic enzyme and the ethylene receptor ETR1. Accumulation of mRNA for AtACO2, a novel ACC (1-aminocyclopropane-1-carboxylic acid) oxidase gene, occurred within cells predominantly located on the outer-side of the hook and was tightly correlated with ethylene-induced exaggeration in the curvature of the hook. ETR1 expression in the apical hook, however, was reduced by ethylene treatment. Based on the expression pattern of ETR1 and AtACO2 in the hook-affected mutants, a model for hook development and maintenance is proposed.  相似文献   

17.
The behavior of organelle nucleoids and cell nuclei was studied in the shoot apical meristem and developing first foliage leaves of Arabidopsis thaliana. Samples were embedded in Technovit 7100 resin, cut into thin sections and stained with 4-6-diamidino-2-phenylindole to observe DNA. Fluorimetry was performed using a video-intensified microscope photon-counting system. The DNA content of individual mitochondria was more than 1 Mbp in the shoot apical meristem and the young leaf primordium, and decreased to approximately 170 kbp in the mature foliage leaf. In contrast, the DNA content of individual plastids was low in the shoot apical meristem and increased until day 7 after sowing. Application of 5-bromo-2-deoxyuridine, an analogue of thymidine, was usesd to investigate DNA synthesis in situ. The activities of DNA synthesis in the mitochondria and plastids changed according to the stage of development. Mitochondrial DNA was actively synthesized in the shoot apical meristem and young leaf primordia. This strongly suggests that the amount of mitochondrial DNA per mitochondrion, which has been synthesized in the shoot apical meristem and young leaf primordium, is gradually reduced due to continual divisions of the mitochondria during low levels of mitochondrial DNA synthesis. Synthesis of DNA in the plastid became active in the leaf primordia following DNA synthesis in the mitochondria, and the small plastids were filled with large plastid nucleotids. This enlargement of the plastid nucleoids occurred before the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase and the development of thylakoids.Abbreviations BrdU 5-bromo-2-deoxyuridine - DAPI 4-6-diamidino-2-phenylindole - DiOC6a 3,3-dihexyloxacarbocyanine - mtDNA mitochondrial DNA - mt-nucleoid mitochondrial nucleoid - ptDNA plastid DNA - pt-nucleoid plastid nucleoid - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase This work was supported by grant No. 2553 to M.F. and Nos. 04454019, 03304005 and 06262204 to T.K. from the Ministry of Education, Science and Culture of Japan, and by a grant for a pioneering research project in biotechnology from the Ministry of Agriculture, Forestry and Fisheries of Japan.  相似文献   

18.
A relationship between light conditions, auxin transport and adventitious root formation by hypocotyls of tomato seedling cuttings was demonstrated. Effective rooting of tomato seedling cuttings was observed under continuous white light (WL) irradiation. However, root formation was reduced in darkness or under red (RL) or blue light (BL). At least 3/4-day-long irradiation treatment with (WL) was necessary to increase the number of roots formed in comparison with control cuttings grown in darkness. Light was most effective if applied during the first half of the 13-day-long rooting period. The role of photoreceptor-dependent light perception in the light-regulation of rooting was tested using tomato photomorphogenic mutants: aurea (au) and high pigment (hp). When exposed to WL both mutants generated fewer roots then their isogenic wild type (WT). In darkness or under BL and RL less roots were formed on all plants and no difference was observed between mutants and WT plants. TIBA (2,3,5-triiodobenzoic acid) inhibited rooting in a dose-dependent manner both in darkness and under WL. However, although rooting was suppressed by 0.75 M TIBA in the dark, 8 M TIBA was necessary to block root formation in continuous WL. Inhibition of rooting by TIBA was most efficient when applied at the initial period of rooting, a 1-day-long treatment with TIBA being sufficient to suppress rooting if given during the first 2 days of culture. Later treatment had much less effect on the root formation.  相似文献   

19.
1,8-cineole is a volatile growth inhibitor produced bySalvia species. We examined the effect of this allelopathic compound on the growth of other plants usingBrassica campestris as the test plant. Cineole inhibited germination and growth ofB. campestris in a dosedependent manner. WhenB. campestris was grown for 5 days with various concentrations of cineole, the length of the roots was found to be shorter as the concentration of cineole increased, whereas the length of the hypocotyl remained constant up to 400 μM cineole, indicating that cineole specifically inhibited growth of the root. The mitotic index in the root apical meristem of 3-day-old seedlings decreased from 5.6% to 1.6% when exposed to 400 μM cineole, showing that cineole inhibits the proliferation of root cells. We then examined the effect of cineole on DNA synthesis by indirect immunofluorescence microscopy using antibody raised against 5-bromo-2′-deoxyuridine (BrdU, an analogue of thymidine) in thin sections of samples embedded in Technovit 7100 resin. The results clearly demonstrated that cineole inhibits DNA synthesis in both cell nuclei and organelles in root apical meristem, suggesting that cineole may interfere with the growth of other plant species by inhibiting DNA synthesis in the root apical meristem.  相似文献   

20.
Analysis of growth during light-induced hook opening in cress   总被引:1,自引:1,他引:0  
Abstract. Growth in various regions of the hypocotyls of dark-grown cress seedlings before and after exposure lo continuous white light has been analysed by time-lapse photography. In the dark, growth in the hook was minimal, the upward growth of the seedling being sustained by extension of the shank, especially the uppermost zones. Following irradiation, the hook and the remainder of the hypocotyl showed dissimilar growth responses. Previously growing regions of the shank were inhibited while zones within the hook, especially the apical end of the inner (concave) side, showed marked growth stimulation. These changes in growth rates commenced within 1 h from exposure to the light stimulus and thus considerably preceded any observable changes in hook angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号