首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conditions for copolymerization of native and sodium periodate-oxidized horseradish peroxidase (HTP; EC 1.11.1.7) have been optimized. Copolymerization products have been characterized electrophoretically, spectrally, and kinetically. Copolymers containing 2-3, 4, 5-7, and 9-10 molecules of the enzyme were found among the products of polymerization. The copolymers had lower values of D403/D280 than HRP. The copolymers had more ordered structures than the original HRP. Comparison of the thermal stability and kinetic characteristics of the fractions differing in the ratio of copolymers to the monomeric enzyme demonstrated that the polymeric products were more stable than HRP (in terms of resistance to high temperature or inhibitory effects of H202), but their kinetic activity was, on the whole, lower than that of the original enzyme.  相似文献   

2.
Polymers and copolymers of horseradish root peroxidase (HRP) and Penicillium funiculosum 46.1 glucose oxidase (GO) have been synthesized and their catalytic properties have been characterized (free and immobilized forms of each enzyme were studied). The cooxidation reaction of phenol and 4-aminoantipyrin (4-AAP), performed in an aqueous medium in the presence of equimolar amounts of GO and HRP, was characterized by effective K M and k cat of 0.58 mM and 20.9 s?1 (for phenol), and 14.6 mM and 18.4 s?1 (glucose), respectively. The catalytic efficiency of polymerization products (PPs) of GO (GO-PPs) depended on the extent of their aggregation. The combinations GO + HRP-PP and HRP + GO-PP, as well as the copolymer HRP*-GO-PP, proved promising as reagents for enzyme-based analytical systems. When adsorbed on aluminum hydroxide gels, GO-PPs exhibited higher catalytic activity than the non-polymeric enzyme. Maximum retention of GO-PP activity on the inorganic carrier was observed in the case of GO-PP copolymers with an activated HRP. Polymerization of HRP in the presence of a zinc hydroxide gel, paralleled by HRP-PP immobilization onto the gel, increased both the activity of the enzyme and its operational stability.  相似文献   

3.
Different methods of immobilization of extracellular glucose oxidase (GO) from Penicillium funiculosum 46.1 on gels of aluminum or zinc hydroxides have been compared. GO from the culture liquid filtrate (CLF) associated with Zn(OH)2 but not Al(OH)3 gels. Preparation of samples of immobilized GO does not require isolation of the enzyme (CLF may be used). GO immobilized on Zn(OH)2 gels from CLF was 1.6 times more efficient in catalyzing D-glucose oxidation than the enzyme contained in the original culture liquid. Crosslinking of gel-adsorbed CLF proteins affected the properties of GO adversely and to a considerable extent. Various means of polymerization and immobilization of GO isolated from CLF have been studied. Optimum results were obtained when GO polymeric products were pre-synthesized in solution, followed by adsorption to Al(OH)3, but not Zn(OH)2 gels. The catalytic efficiency of GO immobilized on a Zn(OH)2 gel was significantly lower than that of the enzyme associated with Al(OH)3.  相似文献   

4.
This work is aimed to immobilize partially purified horseradish peroxidase (HRP) on wool activated by multifunctional reactive center, namely cyanuric chloride. The effect of cyanuric chloride concentration, pH and enzyme concentration on immobilization of HRP was studied. FT-IR and SEM analyses were detected for wool, activated wool and immobilized wool-HRP. The wool-HRP, prepared at 2% (w/v) cyanuric chloride and pH 5.0, retained 50% of initial activity after seven reuses. The wool-HRP showed broad optimum pH at 7.0 and 8.0, which was higher than that of the soluble HRP (pH 6.0). The soluble HRP had an optimum temperature of 30 °C, which was shifted to 40 °C for immobilized enzyme. The soluble and wool-HRP were stable up to 30 and 40 °C after incubation for 1 h, respectively. The apparent kinetic constant values (Kms) of wool-HRP were 10 mM for guiacol and 2.5 mM for H2O2, which were higher than that of soluble HRP. The wool-HRP was remarkably more stable against proteolysis mediated by trypsin. The wool-HRP exhibited more resistance to heavy metal induced inhibition. The wool-HRP was more stable to the denaturation induced by urea, Triton X-100, isopropanol, butanol and dioxan. The wool-HRP was found to be the most stable under storage. In conclusion, the wool-HRP could be more suitable for several industrial and environmental purposes.  相似文献   

5.
In order to establish whether p.m.r. spectroscopy is useful for identifying Amadori- and Heyns-rearrangement products, the p.m.r. spectra at 220 MHz of 16 rearrangement products derived from d-glucose or d-fructose and amino acids have been investigated. At pH 3, the protons of the NCH2 group of N-substituted 1-amino-1-deoxy-d-fructose (Amadori-rearrangement products) resonate at δ 3.25–3.60 in D2O and are shifted upfield by 0.3–0.6 p.p.m. at pH 9. These protons exchange with deuterium. Also, in D2O there is an equilibrium of the acyclic, furanose, and pyranose structures, the last being favoured. At pH ? 7, the equilibrium is completely shifted to the β-pyranose form, which adopts exclusively the 2C5 conformation. At pH 3, the equilibrium favours the β-furanose form. At pH 3, H-1e and H-1a of N-substituted 2-amino-2-deoxy-d-glucoses (Heyns-rearrangement products) resonate at δ 5.55 and 5.04, respectively. At pH 9, the signal for H-2 is shifted upfield by 0.2–0.7 p.p.m. In D2O solution, these compounds exist as an equilibrium of α- and β-pyranose forms in the 4C1 conformation. The α anomer is stabilised by the amino acid group at position 2. At pH 3, the αβ-ratio is 2–4:1, and, at pH 9, 1.0–1.1:1.  相似文献   

6.
Magnetosomes are intracellular structures produced by magnetotactic bacteria and are magnetic nanoparticles surrounded by a lipid bilayer membrane. Magnetosomes reportedly possess intrinsic enzyme mimetic activity similar to that found in horseradish peroxidase (HRP) and can scavenge reactive oxygen species depending on peroxidase activity. Our previous study has demonstrated the phototaxis characteristics of Magnetospirillum magneticum strain AMB-1 cells, but the mechanism is not well understood. Therefore, we studied the relationship between visible-light irradiation and peroxidase-like activity of magnetosomes extracted from M. magneticum strain AMB-1. We then compared this characteristic with that of HRP, iron ions, and naked magnetosomes using 3,3′,5,5′-tetramethylbenzidine as a peroxidase substrate in the presence of H2O2. Results showed that HRP and iron ions had different activities from those of magnetosomes and naked magnetosomes when exposed to visible-light irradiation. Magnetosomes and naked magnetosomes had enhanced peroxidase-like activities under visible-light irradiation, but magnetosomes showed less affinity toward substrates than naked magnetosomes under visible-light irradiation. These results suggested that the peroxidase-like activity of magnetosomes may follow an ordered ternary mechanism rather than a ping–pong mechanism. This finding may provide new insight into the function of magnetosomes in the phototaxis in magnetotactic bacteria.  相似文献   

7.
The products of action of a purified, extracellular endo-dextranase D1, isolated from a new species of Pseudomonas, on pure isomaltose oligosaccharides have been investigated. Reduced and tritiated oligosaccharides have also been studied, and a model is postulated for the enzyme active-site, based on substrate specificity.  相似文献   

8.
The individual and combined effects of water activity (aw), bulk viscosity and glass transition temperature (Tg’) on the activity of horseradish peroxidase (HRP) in buffered sugars (glucose, trehalose and maltose) and maltodextrin solutions were investigated. Viscosity was the most important factor in the inhibition of HRP activity; however, when Tg’ was changed by the using solutes with different molecular weight, it became a key factor in the modulation of enzyme activity. Viscosity being equal, the sugar addition to maltodextrin solution lowered aw and lowered Tg’ causing an increase of the enzymatic activity. Nevertheless, an inhibition of the HRP activity occurred when aw values of 0.87 were reached due to the addition of glucose, which, among the tested sugars, showed the lowest molecular weight. Among disaccharides, maltose was more effective than trehalose in impairing the enzyme activity both in binary and ternary systems, and this is due to a non competitive biochemical inhibition exerted by this sugar on HRP. When compared to glucose, maltose and trehalose were more effective in reducing HRP activity only in the low viscosity range whilst in the high viscosity range (1–4 10?6 m2 s?1) glucose, despite its lower Tg’ value, was slightly more efficient than disaccharides due to its aw lowering effect.  相似文献   

9.
Acetate kinase, a member of the ASKHA (Acetate and Sugar Kinases, Hsp70, Actin) phosphotransferase superfamily is a central enzyme in prokaryotic carbon and energy metabolism. Recently extensive structural and biochemical studies of acetate kinase and related carboxylate kinases have been conducted. Analysis of the kinetic properties of wild-type and mutant enzymes has been impeded by the nature of the current assays for acetate kinase activity. These assays have the disadvantages of being either discontinuous or insensitive or of utilizing compounds that interfere with activity measurements. We have developed a novel continuous assay that depends on the purine nucleoside phosphorylase-based spectroscopic measurement of the inorganic phosphate generated by hydroxylaminolysis of one of the products of the acetate kinase reaction, acetyl phosphate. This assay has enabled a determination of the kinetic parameters of the Thermotoga maritima acetate kinase that indicates a lower Km for acetate than previously published.  相似文献   

10.
Hydrophilic water-insoluble gels suitable for affinity chromatography of lectins have been prepared by copolymerization of acrylamide, N,N′-methylene bisacrylamide and alkenyl 1-thioglycosides. Water-soluble copolymers of analogous type have been obtained by omitting the cross-linking agent, N,N′-methylene bisacrylamide.In affinity chromatography of the Ricinus communis lectin it could be shown that the capacity for the lectin of the water insoluble copolymers was more than four times higher in copolymers having the S-β-D-galactosyl ligand attached through a methylene bridge than in derivatives with a nonamethylene spacer.None of the insoluble S-β-D-glycosyl copolymers prepared could be shown usable as affinity adsorbent for glycosidases though the corresponding soluble copolymers inhibited the activity of the enzymes.  相似文献   

11.
Starch was reacted with acrylamide in water in the presence of horseradish peroxidase (HRP) catalyst/H2O2/2,4 pentanedione to give starch–polyacrylamide graft copolymers.  相似文献   

12.
Homogenate preparations of human liver have been prepared and over 75% of the particulate neuraminidase activity (which comprises approx. 90% of the total activity) has been solubilized using 0.85% (w/v) Triton X-100 in 25 mM phosphate buffer (pH 6.8). The solubilized neuraminidase activity is extremely labile, but can be stabilized for at least 4 weeks at 2–4°C, using 10 mM N-acetylneuraminic acid. Kinetic characterization of homogenate and solubilized supernatant fluid neuraminidase activities indicated comparable pH optimum curves (maximum activity at pH 4.5–4.7) and apparent Km values (0.2–0.4 mM) for the synthetic fluorometric substrate 4-methylbelliferyl-α-D-N-acetylneuraminic acid. Isoelectric focusing has been performed on human liver homogenates and Triton X-100-solubilized neuraminidase activities, and the presence of several forms (4–6) with isoelectric points (pI values) between 4.4 and 5.2 has been demonstrated in both preparations. The similar kinetic and isoelectric focusing properties of the two preparations suggest that the solubilized enzyme activity is representative of the homogenate activity and that the solubilized enzyme is suitable for purification purposes.  相似文献   

13.
A four-stage purification procedure including ammonium sulfate precipitation and ion exchange chromatography on DEAE cellulose has been elaborated for isolation of isocitrate lyase (EC 4.1.3.1) isoforms from the cotyledons of soybean Glycine max L. Electrophoretically homogeneous preparations of two forms of the enzyme with specific activity of 5.28 and 5.81 U/mg protein have been obtained. Comparison of physicochemical, kinetic, and regulation characteristics of the isoforms obtained revealed fundamental differences between them. Thus, the isoform that migrated quickly in PAAG had a much lower affinity to isocitrate (K M — 50 μM) than the slowly migrating form (K M — 16 μM). It has been shown that the conservation of activity of the isoforms obtained depends on the presence of divalent cations (Mn2+ and Mg2+) in the medium. It is suggested to use the isoforms of isocitrate lyase isolated from soybeans for the development of biosensors for biochemical and kinetic assays.  相似文献   

14.
Ozone-induced oxidation of fibrinogen has been investigated. The conversion of oxidized fibrinogen to fibrin catalyzed either by thrombin or by a reptilase-like enzyme, ancistron, in both cases is accompanied by production of gels characterized by a higher weight/length ratio of fibrils in comparison with the native fibrin gels. IR spectra of the D and E fragments isolated from unoxidized and oxidized fibrinogen suggest a noticeable transformation of functional groups by oxidation. A decrease in content of N-H groups in the peptide backbone and in the number of C-H bonds in aromatic structures, as well as a decrease in the intensity of the C-H valence vibrations in aliphatic fragments CH2 and CH3 were found. The appearance in the differential spectra of the D fragments of rather intense peaks in the interval of 1200–800 cm?1 clearly indicates the interaction of ozone with amino acid residues of methionine, tryptophan, histidine, and phenylalanine. Comparison of the differential spectra for the D and E fragments suggests that fibrinogen fragment D is more sensitive to the oxidant action than fragment E. Using EPR spectroscopy, differences are found in the spectra of spin labels bound with degradation products of oxidized and unoxidized fibrinogen, the D and E fragments, caused by structural and dynamical modifications of the protein molecules in the areas of localization of the spin labels. The relationship between the molecular mechanism of oxidation of fibrinogen and its three-dimensional structure is discussed.  相似文献   

15.
Acetaminophen, also called paracetamol, is found in Tylenol, Excedrin and other products as over–the‐counter medicines. In this study, acetaminophen as a luminol signal enhancer was used in the chemiluminescence (CL) substrate solution of horseradish peroxidase (HRP) for the first time. The use of acetaminophen in the luminol–HRP–H2O2 system affected not only the intensity of the obtained signal, but also its kinetics. It was shown that acetaminophen was to be a potent enhancer of the luminol–HRP–H2O2 system. A putative enhancement mechanism for the luminol–H2O2–HRP–acetaminophen system is presented. The resonance of the nucleophilic amide group and the benzene ring of acetaminophen structure have a great effect on O‐H bond dissociation energy of the phenol group and therefore on phenoxyl radical stabilization. These radicals act as mediators between HRP and luminol in an electron transfer reaction that generates luminol radicals and subsequently light emission, in which the intensity of CL is enhanced in the presence of acetaminophen. In addition, a simple method was developed to detect acetaminophen by static injection CL based on the enhanced CL system of luminol–H2O2–HRP by acetaminophen. Experimental conditions, such as pH and concentrations of substrates, have been examined and optimized. The proposed method exhibited good performance, the linear range was from 0.30 to 7.5 mM, the relative standard deviation was 1.86% (n = 10), limit of detection was 0.16 mM and recovery was 99 ± 4%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
A new approach to the regulation of catalytic properties of medically relevant enzymes has been proposed using the novel recombinant preparation of L-asparaginase from Erwinia carotovora (EwA), a promising antitumor agent. New branched co-polymers of different composition based on chitosan modified with polyethylene glycol (PEG) molecules, designated as PEG-chitosan, have been synthesized. PEG-chitosan copolymers were further conjugated with EwA. In order to optimize the catalytic properties of asparaginase two types of conjugates differing in their architecture have been synthesized: (1) crown-type conjugates were synthesized by reductive amination reaction between the reducing end of the PEG-chitosan copolymer and enzyme amino groups; (2) multipoint-conjugates were synthesized using the reaction of multipoint amide bond formation between PEG-chitosan amino groups and carboxyl groups of the enzyme in the presence of the Woodward’s reagent. The structure and composition of these conjugates were determined by IR spectroscopy. The content of the copolymers in the conjugates was controlled by the characteristic absorption band of C-O-C bonds in the PEG structure at the frequency of 1089 cm?1. The study of catalytic characteristics of EwA preparations by conductometry showed that at physiological pH values the enzyme conjugates with PEG-chitosan with optimized structure and the optimal composition demonstrated 5–8-fold higher catalytic efficiency (k cat/K m) than the native enzyme. To certain extent, this can be attributed to favorable shift of pH-optima in result of positively charged amino-groups introduction in the vicinity of the active site. The proposed approach, chito-pegylation, is effective for regulating the catalytic and pharmacokinetic properties of asparaginase, and is promising for the development of prolonged action dosage forms for other enzyme therapeutics.  相似文献   

17.
In the present study, we investigated the inhibitory effect of three catechol-containing coffee polyphenols, chlorogenic acid, caffeic acid and caffeic acid phenethyl ester (CAPE), on the O-methylation of 2- and 4-hydroxyestradiol (2-OH-E2 and 4-OH-E2, respectively) catalyzed by the cytosolic catechol-O-methyltransferase (COMT) isolated from human liver and placenta. When human liver COMT was used as the enzyme, chlorogenic acid and caffeic acid each inhibited the O-methylation of 2-OH-E2 in a concentration-dependent manner, with IC50 values of 1.3–1.4 and 6.3–12.5 μM, respectively, and they also inhibited the O-methylation of 4-OH-E2, with IC50 values of 0.7–0.8 and 1.3–3.1 μM, respectively. Similar inhibition pattern was seen with human placental COMT preparation. CAPE had a comparable effect as caffeic acid for inhibiting the O-methylation of 2-OH-E2, but it exerted a weaker inhibition of the O-methylation of 4-OH-E2. Enzyme kinetic analyses showed that chlorogenic acid and caffeic acid inhibited the human liver and placental COMT-mediated O-methylation of catechol estrogens with a mixed mechanism of inhibition (competitive plus noncompetitive). Computational molecular modeling analysis showed that chlorogenic acid and caffeic acid can bind to human soluble COMT at the active site in a similar manner as the catechol estrogen substrates. Moreover, the binding energy values of these two coffee polyphenols are lower than that of catechol estrogens, which means that coffee polyphenols have higher binding affinity for the enzyme than the natural substrates. This computational finding agreed perfectly with our biochemical data.  相似文献   

18.
A series of truncated gene products from an alkaline cellulase from an alkalophilic Bacillus sp. No. 1139 has been prepared. The variously sized proteins were products of in vitro insertional mutagenesis constructs made by gene inserts containing translational terminators. One product, a 46-kDa protein, which had about half the Mr of the original cellulase, had a similar enzyme activity and pH optimum to the original 92-kDa protein. In contrast, a slightly smaller product protein (43 kDa) did not show cellulase activity.  相似文献   

19.
One endopolygalacturonase from Fusarium moniliforme was purified from the culture broth of a transformed strain of Saccharomyces cerevisiae. Its kinetic parameters and mode of action were studied on galacturonic acid oligomers and homogalacturonan. The dimer was not a substrate for the enzyme. The enzyme was shown to follow Michaelis–Menten behaviour towards the other substrates tested. Affinity and maximum rate of hydrolysis increased with increasing chain length, up to the hexamer or heptamer, for which Vmax was in the same range as with homogalacturonan. The enzyme was demonstrated to have a multi-chain attack mode of action and its active site included five subsites ranging from −3 to +2. The final products of hydrolysis of homogalacturonan were the monomer and the dimer of galacturonic acid.  相似文献   

20.
Data from thermal stability of a keratinolytic protease produced by the Amazon isolate Bacillus sp. P7 was fitted to various mathematical models. Kinetic modeling showed that Weibull distribution was the best equation to describe the residual activity of protease P7 after heat treatment. The effects of temperature on equation parameters and on characteristics of the inactivation curves were evaluated. As expected, faster inactivation was observed at higher temperatures. The critical temperature to accelerate protease decomposition was about 70 °C. The reliable life (t R) of the enzyme, analogous to the D value, ranged from 1,824 to 8 min at 45–65 °C. Within these temperatures, an increase of 8.81 °C was needed to lower enzyme t R in one-log unit. Protease P7 is a potentially useful biocatalyst for various industrial bioprocesses, and therefore, kinetic modeling of thermal inactivation addresses an important topic aiming enzyme characterization and applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号