首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
D. F. Lyman  B. Yedvobnick 《Genetics》1995,141(4):1491-1505
The neurogenic Notch locus of Drosophila encodes a receptor necessary for cell fate decisions within equivalence groups, such as proneural clusters. Specification of alternate fates within clusters results from inhibitory communication among cells having comparable neural fate potential. Genetically, Hairless (H) acts as an antagonist of most neurogenic genes and may insulate neural precursor cells from inhibition. H function is required for commitment to the bristle sensory organ precursor (SOP) cell fate and for daughter cell fates. Using Notch gain-of-function alleles and conditional expression of an activated Notch transgene, we show that enhanced signaling produces H-like loss-of-function phenotypes by suppressing bristle SOP cell specification or by causing an H-like transformation of sensillum daughter cell fates. Furthermore, adults carrying Notch gain of function and H alleles exhibit synergistic enhancement of mutant phenotypes. Over-expression of an H(+) transgene product suppressed virtually all phenotypes generated by Notch gain-of-function genotypes. Phenotypes resulting from over-expression of the H(+) transgene were blocked by the Notch gain-of-function products, indicating a balance between Notch and H activity. The results suggest that H insulates SOP cells from inhibition and indicate that H activity is suppressed by Notch signaling.  相似文献   

2.
本文概述了腔肠动物的平衡感觉器官结构:刺胞动物掌状伞形螅(Corymorpha palma)固着器末端的无纤毛平衡囊、软水母(Leptomedusae)钟形伞缘的开放型和封闭型平衡囊、筐水母(Narcomedusae)外伞表面外伞神经环上方边缘有感觉棍的间囊水母(Aegina)和有感觉乳突及感觉棍的嗜阳水母(Solmissus)的平衡囊、硬水母(Trachymedusae)外伞神经环上方边缘的平衡囊、钵水母(Scyphozoa)伞缘的感觉棍和立方水母(Cubozoa)伞缘稍上方的感觉棍,栉水母(Ctenophore)反口面中央的平衡囊或顶器官。本文内容对理解其他水生无脊椎动物的平衡感觉器官的结构及功能有重要意义,同时也可能作为对现行动物学相关教材内容的有益补充。  相似文献   

3.
4.
文章介绍了被子植物花器官特征属性决定的分子机制研究进展。  相似文献   

5.
Plants continuously generate organs at the flanks of their shoot apical meristems (SAMs). The patterns in which these organs are initiated, also called patterns of phyllotaxis, are highly stereotypic and characteristic for a particular species or developmental stage. This stable, predictable behaviour of the meristem has led to the idea that organ initiation must be based on simple and robust mechanisms. This conclusion is less evident, however, if we consider the very dynamic behaviour of the individual cells. How dynamic cellular events are coordinated and how they are linked to the regular patterns of organ initiation is a major issue in plant developmental biology.  相似文献   

6.
7.
8.
Andersson, A. 1980. The fine structure of a sensory organ of a cladocop ostracode (Crustacea) belonging to the organ of Bellonci (sensory pore) complex. (Department of Zoology, University of Lund, Sweden.) — Acta zool. (Stockh.) 61(1): 51–58. The organ of Bellonci, a complex of cephalic receptors, has previously been reported from two ostracode groups. On morphologic grounds, a cephalic receptor of a third ostracode group (Cladocopa) is believed to be an organ of Bellonci. The organ is situated on the forehead above the first pair of antennae and consists of two feathered hairs. Two nerves, each formed by one dendrite, run from the protocerebrum into the hairs where they terminate with ramose cilia. The dendrites, as well as the cilia and ciliary branches, are enveloped by glial cells. Distally, these cells form cavities around the ciliary branches. The ciliated neuronal connection and the glial cavities, together with other morphologic characteristics of the organ, support a homologization with the organ of Bellonci of other myodocopid ostracodes.  相似文献   

9.
Microvesicles are of increasing interest in biology as part of normal function of numerous systems; from the immune system (T cell activation) to implantation of the embryo (invasion of the trophoblasts) and sperm maturation (protein transfer in the epididymis). Yet, the mechanisms involved in the appearance of apical blebbing from healthy cells as part of their normal function remain understudied. Microvesicles are produced via one of two pathways: exocytosis or apical blebbing also termed ectocytosis. This work quantifies the histological appearance of apical blebbing in the porcine epididymis during development and examines the role of endogenous estrogens in regulating this blebbing. Apical blebbing appears at puberty and increases in a linear manner into sexual maturity suggesting that this blebbing is a mature phenotype. Endogenous estrogen levels were reduced with an aromatase inhibitor but such a reduction did not affect apical blebbing in treated animals compared with their vehicle-treated littermates. Epididymal production of apical blebs is a secretion mechanism of functionally mature principal cells regulated by factors other than estradiol.  相似文献   

10.
Since the discovery of Green Fluorescent Protein (GFP), there has been a revolutionary change in the use of live-cell imaging as a tool for understanding fundamental biological mechanisms. Striking progress has been particularly evident in Drosophila, whose extensive toolkit of mutants and transgenic lines provides a convenient model to study evolutionarily-conserved developmental and cell biological mechanisms. We are interested in understanding the mechanisms that control cell fate specification in the adult peripheral nervous system (PNS) in Drosophila. Bristles that cover the head, thorax, abdomen, legs and wings of the adult fly are individual mechanosensory organs, and have been studied as a model system for understanding mechanisms of Notch-dependent cell fate decisions. Sensory organ precursor (SOP) cells of the microchaetes (or small bristles), are distributed throughout the epithelium of the pupal thorax, and are specified during the first 12 hours after the onset of pupariation. After specification, the SOP cells begin to divide, segregating the cell fate determinant Numb to one daughter cell during mitosis. Numb functions as a cell-autonomous inhibitor of the Notch signaling pathway.Here, we show a method to follow protein dynamics in SOP cell and its progeny within the intact pupal thorax using a combination of tissue-specific Gal4 drivers and GFP-tagged fusion proteins 1,2.This technique has the advantage over fixed tissue or cultured explants because it allows us to follow the entire development of an organ from specification of the neural precursor to growth and terminal differentiation of the organ. We can therefore directly correlate changes in cell behavior to changes in terminal differentiation. Moreover, we can combine the live imaging technique with mosaic analysis with a repressible cell marker (MARCM) system to assess the dynamics of tagged proteins in mitotic SOPs under mutant or wildtype conditions. Using this technique, we and others have revealed novel insights into regulation of asymmetric cell division and the control of Notch signaling activation in SOP cells (examples include references 1-6,7 ,8).  相似文献   

11.
The organization of the nervous system and the histology and ultrastructure of the apical disc and the pyriform organ have been investigated by serial sections with light and electron microscopy for the larva of the vesiculariid ctenostome bryozoan Bowerbankia gracilis Leidy 1855. The nervous system consists of four major internal components: (1) a median-anterior nerve nodule; (2) an equatorial, subcoronal nerve ring; (3) paired aboral nerve cords; (4) paired antero-lateral nerve tracts. The nervous system is associated with the ciliated larval surface at the apical disc, the pyriform organ, the corona and the intercoronal cells. The paired aboral nerve cords extend from the apical disc to the nerve nodule, which gives rise to the paired antero-lateral nerve tracts to the pyriform organ and to paired lateral tracts that form the equatorial nerve ring. Ultrastructural evidence is provided for the designation of primary sensory cells in the neural plate of the apical disc and in the juxtapapillary regions of the pyriform organ. Efferent synapses are described between the equatorial nerve ring and the overlying coronal cells, which constitute the primary locomotory organ of the larva. The repertoire of potential functions of the apical disc and pyriform organ are discussed. It is concluded that the apical disc and pyriform organ constitute larval sensory organs involved in orientation and substrate selection, respectively. Their association with the major effector organs of the larva (the corona and the musculature) via the nervous system supports this interpretation.  相似文献   

12.
鸣禽发声器官在鸣啭过程中的功能   总被引:1,自引:0,他引:1  
鸣禽的鸣啭是一种习得行为,与人类的学习过程较为相似.因此鸣禽作为一种动物模型在研究人类学习记忆方面得到广泛的应用.鸣管和鸣肌是鸣禽鸣啭的主要器官,对鸣啭过程起着复杂的调节作用.此外,不同的鸣禽在鸣啭时,其发声器官具有不同的侧别优势.对近年在鸣禽发声器官功能方面的研究进行综述.  相似文献   

13.
14.
  相似文献   

15.
The pH of the hemolymph of selected invertebrates decreasesas their body temperature increases. The magnitude of this change(pH/°C) is very similar to the change of the pH of waterwith temperature (pN/°C) and suggests that these invertebrates,like poikilothermous vertebrates, regulate the pH of their extracellularfluid so that its degree of alkalinity relative to the pH ofwater remains constant. The degree of alkalinity (pHblood-pN)varies between species, but seems to be fixed for any givenspecies. In Limulus pH-pN was essentially the same for in vivosamples, measured after the whole animal had been acclimatedto different temperatures, as it was for in vitro samples inwhich the hemolymph was cooled or warmed anaerobically, suggestingthat the CO2 content of the extracellular fluid is constantas the temperature changes. The PCO2 of the hemolymph is invariablylower in animals breathing water than in those breathing air.In the invertebrates, as in the vertebrates, manipulation ofPCO2 and HCO3- is probably the major mechanism in the regulationof the relative alkalinity of the extracellular fluid.  相似文献   

16.
In higher plants, the process of embryogenesis establishes the plant body plan (body axes). On the basis of positional information specified by the body axes, the shoot apical meristem (SAM) and root apical meristem (RAM) differentiate at fixed positions early in embryogenesis. After germination, SAM and RAM are responsible for the development of the above-ground and below-ground parts, respectively, of the plant. Because of the importance of SAM function in plant development, the mechanisms of SAM formation during embryogenesis and of SAM maintenance and function in post-embryonic development are priority questions in plant developmental biology. Recent advances in molecular and genetic analysis of morphogenetic mutations in Arabidopsis have revealed several components required for SAM formation, maintenance and function. Although these processes are fundamental to the life cycle of every plant, conservation of the components does not explain the diversity of plant morphologies. Rice is used as a model plant of the grass family and of monocots because of the progress in research infrastructure, especially the collection of unique mutations and genome information. In comparison with the dicot Arabidopsis, rice has many unique organs or processes of development. This review summarizes what is known of the processes of SAM formation, maintenance and function in rice.  相似文献   

17.
Microbial films play a central role in mediating energy flux in groundwater ecosystems. The activity of these microbes is likely to be influenced by the availability of resources, especially dissolved organic matter (DOM), and also by consumers, such as invertebrates that feed on microbial films. We used microcosm experiments to examine how bacterial production and extracellular enzyme activity on rocks and fine sediments from cave streams responded to amendments of DOM of varying form and to cave amphipods (Gammarus minus) that feed on microbial films. Glucose and mixtures of DOM extracted from soils and leaves stimulated bacterial production on rocks by 89–166% relative to unamended controls. In contrast, tannic acid amendment did not influence production. Microbial films on fine sediment were not consistently responsive to DOM amendment. Glucose amendment led to increased activity of enzymes associated with C acquisition, but other forms of DOM generally did not alter enzyme activity. DOM amendment led to removal of nitrate and this was correlated with bacterial production, suggesting microbes can link carbon and nitrogen cycling in groundwater as is the case in surface systems. Amphipods reduced bacterial production on rocks, but not fine sediments. The reduction caused by amphipods offset the stimulatory effect of glucose amendment, but there was no interactive effect of DOM and grazing on bacterial production or enzyme activity. Both resources and consumers play important roles in regulating microbial activity in groundwater with important implications for higher trophic levels that use microbes for food.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号