首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor (EGF) stimulates the homodimerization of EGF receptor (EGFR) and the heterodimerization of EGFR and ErbB2. The EGFR homodimers are quickly endocytosed after EGF stimulation as a means of down-regulation. However, the results from experiments on the ability of ErbB2 to undergo ligand-induced endocytosis are very controversial. It is unclear how the EGFR-ErbB2 heterodimers might behave. In this research, we showed by subcellular fractionation, immunoprecipitation, Western blotting, indirect immunofluorescence, and microinjection that, in the four breast cancer cell lines MDA453, SKBR3, BT474, and BT20, the EGFR-ErbB2 heterodimerization levels were positively correlated with the ratio of ErbB2/EGFR expression levels. ErbB2 was not endocytosed in response to EGF stimulation. Moreover, in MDA453, SKBR3, and BT474 cells, which have very high levels of EGFR-ErbB2 heterodimerization, EGF-induced EGFR endocytosis was greatly inhibited compared with that in BT20 cells, which have a very low level of EGFR-ErbB2 heterodimerization. Microinjection of an ErbB2 expression plasmid into BT20 cells significantly inhibited EGF-stimulated EGFR endocytosis. Coexpression of ErbB2 with EGFR in 293T cells also significantly inhibited EGF-stimulated EGFR endocytosis. EGF did not stimulate the endocytosis of ectopically expressed ErbB2 in BT20 and 293T cells. These results indicate that ErbB2 and the EGFR-ErbB2 heterodimers are impaired in EGF-induced endocytosis. Moreover, when expressed in BT20 cells by microinjection, a chimeric receptor composed of the ErbB2 extracellular domain and the EGFR intracellular domain underwent normal endocytosis in response to EGF, and this chimera did not block EGF-induced EGFR endocytosis. Thus, the endocytosis deficiency of ErbB2 is due to the sequence of its intracellular domain.  相似文献   

2.
Overexpression and poor downregulation of ErbB receptor tyrosine kinases are associated with enhanced signaling and tumorigenesis. Attenuation of EGF-receptor (EGFR) signaling is mediated by endocytosis and ubiquitination by the E3-ligase Cbl. En route to lysosomes, but before incorporation of the EGFR into internal vesicles of MVBs, the EGFR undergoes Usp8-mediated deubiquitination. ErbB2 displays enhanced recycling back to the cell surface, and therefore we hypothesized that Usp8 is not part of the ErbB2 trafficking pathway. Here, we demonstrate, in the context of a chimeric EGFR-ErbB2 receptor, that (i) EGF induces pY1091 Cbl binding site-dependent K63-polyubiquitination of EGFR-ErbB2, (ii) Cbl is tyrosine phosphorylated upon stimulation of EGFR-ErbB2 wt and Y1091F mutant receptor, (iii) EGF-induced activation of EGFR-ErbB2 induces Usp8 tyrosine phosphorylation, and (iv) ubiquitination of the EGFR-ErbB2 wt and Y1091F mutant is enhanced upon coexpression of catalytically inactive Usp8-C748A in the presence and absence of EGF. We further show that Usp8 tyrosine phosphorylation upon stimulation of EGFR-ErbB2 is (a) independent of Y1091, (b) dependent on Src- and EGFR-ErbB2-kinase activity, (c) enhanced upon coexpression of Usp8-C748A, and (d) partly dependent on the Microtubule Interacting and Transport (MIT) domain of Usp8. Our findings demonstrate that Usp8 is part of the ErbB2 endosomal trafficking pathway.  相似文献   

3.
We have previously shown that, although overexpression of mutant dynamin inhibits clathrin-dependent endocytosis and disrupts high affinity binding of epidermal growth factor (EGF) to the EGF receptor (EGFR), it does not inhibit ligand-induced translocation of the EGFR into clathrin-coated pits. In the present study, we demonstrate that, upon ligand binding and incubation at 37 degrees C, the EGFR was polyubiquitinated regardless of overexpression of mutant dynamin. In cells not overexpressing mutant dynamin, the EGFR was rapidly internalized and deubiquitinated. In cells being endocytosis-deficient, due to overexpression of mutant dynamin, however, the EGFR was upon prolonged chase first found in deeply invaginated coated pits, and then eventually moved out of the coated pits and back onto the smooth plasma membrane. Polyubiquitination occurred equally efficiently in cells with or without intact clathrin-dependent endocytosis, while the kinetics of ubiquitination and deubiquitination was somewhat different. We further found that the EGF-induced ubiquitination of Eps15 occurred both in the absence and presence of endocytosis with the same kinetics as polyubiquitination of the EGFR, but that the EGF-induced monoubiquitination of Eps15 was somewhat reduced upon overexpression of mutant dynamin. Our data show that EGF-induced polyubiquitination of the EGFR occurs at the plasma membrane.  相似文献   

4.
5.
This review article describes the pathways and mechanisms of endocytosis and post-endocytic sorting of the EGF receptor (EGFR/ErbB1) and other members of the ErbB family. Growth factor binding to EGFR accelerates its internalization through clathrin-coated pits which is followed by the efficient lysosomal targeting of internalized receptors and results in receptor down-regulation. The role of EGFR interaction with the Grb2 adaptor protein and Cbl ubiquitin ligase, and receptor ubiquitination in the clathrin-dependent internalization and sorting of EGFR in multivesicular endosomes is discussed. Activation and phosphorylation of ErbB2, ErbB3 and ErbB4 also results in their ubiquitination. However, these ErbBs are internalized and targeted to lysosomes less efficiently than EGFR. When overexpressed endocytosis-impaired ErbBs may inhibit the internalization and degradation of EGFR.  相似文献   

6.
This review article describes the pathways and mechanisms of endocytosis and post-endocytic sorting of the EGF receptor (EGFR/ErbB1) and other members of the ErbB family. Growth factor binding to EGFR accelerates its internalization through clathrin-coated pits which is followed by the efficient lysosomal targeting of internalized receptors and results in receptor down-regulation. The role of EGFR interaction with the Grb2 adaptor protein and Cbl ubiquitin ligase, and receptor ubiquitination in the clathrin-dependent internalization and sorting of EGFR in multivesicular endosomes is discussed. Activation and phosphorylation of ErbB2, ErbB3 and ErbB4 also results in their ubiquitination. However, these ErbBs are internalized and targeted to lysosomes less efficiently than EGFR. When overexpressed endocytosis-impaired ErbBs may inhibit the internalization and degradation of EGFR.  相似文献   

7.
In HeLa cells depleted of adaptor protein 2 complex (AP2) by small interfering RNA (siRNA) to the mu2 or alpha subunit or by transient overexpression of an AP2 sequestering mutant of Eps15, endocytosis of the transferrin receptor (TfR) was strongly inhibited. However, epidermal growth factor (EGF)-induced endocytosis of the EGF receptor (EGFR) was inhibited only in cells where the alpha subunit had been knocked down. By immunoelectron microscopy, we found that in AP2-depleted cells, the number of clathrin-coated pits was strongly reduced. When such cells were incubated with EGF, new coated pits were formed. These contained EGF, EGFR, clathrin, and Grb2 but not the TfR. The induced coated pits contained the alpha subunit, but labeling density was reduced compared to control cells. Induction of clathrin-coated pits required EGFR kinase activity. Overexpression of Grb2 with inactivating point mutations in N- or C-terminal SH3 domains or in both SH3 domains inhibited EGF-induced formation of coated pits efficiently, even though Grb2 SH3 mutations did not block activation of mitogen-activated protein kinase (MAPK) or phosphatidylinositol 3-kinase (PI3K). Our data demonstrate that EGFR-induced signaling and Grb2 are essential for formation of clathrin-coated pits accommodating the EGFR, while activation of MAPK and PI3K is not required.  相似文献   

8.
ErbB receptors play an important role in normal cellular growth, differentiation and development, but overexpression or poor downregulation can result in enhanced signaling and cancerous growth. ErbB signaling is terminated by clathrin-dependent receptor-mediated endocytosis, followed by incorporation in multi-vesicular bodies and subsequent degradation in lysosomes. In contrast to EGFR, ErbB2 displays poor ligand-induced downregulation and enhanced recycling, but the molecular mechanisms underlying this difference are poorly understood. Given our previous observation that both EGFR and an EGFR-ErbB2 chimera undergo Cbl-mediated K63-polyubiquitination, we investigated in the present study whether activation of the EGFR and the EGFR-ErbB2 chimera is associated with tyrosine phosphorylation of the ESCRT-0 complex subunit Hrs and AMSH-mediated deubiquitination. EGF stimulation of the EGFR resulted in efficient Hrs tyrosine phosphorylation and deubiquitination by the K63-polyubiquitin chain-specific deubiquitinating enzyme AMSH. In contrast, EGF activation of EGFR-ErbB2 showed significantly decreased Hrs tyrosine phosphorylation and deubiquitination by AMSH. To test whether this phenotype is the result of endosomal recycling, we induced recycling of the EGFR by stimulation with TGFα. Indeed, even though TGFα-stimulation of EGFR is associated with efficient ligand-stimulated K63-polyubiquitination, we observed that Hrs tyrosine phosphorylation as well as AMSH-mediated deubiquitination is significantly reduced under these conditions. Using various EGFR-ErbB2 chimeras, we demonstrate that enhanced recycling, decreased Hrs tyrosine phosphorylation and decreased AMSH mediated deubiquitination of EGFR-ErbB2 chimeras is primarily due to the presence of ErbB2 sequences or the absence of EGFR sequences C-terminal to the Cbl binding site. We conclude that endosomal recycling of the EGFR and ErbB2 receptors is associated with significantly impaired tyrosine phosphorylation of the ESCRT-0 subunit Hrs as well as decreased deubiquitination by AMSH, which is consistent with the finding that recycling receptors are not efficiently incorporated in the MVB pathway.  相似文献   

9.
Regulated migration of epidermal growth factor receptor from caveolae.   总被引:22,自引:0,他引:22  
In quiescent fibroblasts, epidermal growth factor (EGF) receptors (EGFR) are initially concentrated in caveolae but rapidly move out of this membrane domain in response to EGF. To better understand the dynamic localization of EGFR to caveolae, we have studied the behavior of wild-type and mutant receptors expressed in cells lacking endogenous EGFR. All of the receptors we examined, including those missing the first 274 amino acids or most of the cytoplasmic tail, were constitutively concentrated in caveolae. By contrast, migration from caveolae required EGF binding, an active receptor kinase domain, and at least one of the five tyrosine residues present in the regulatory domain of the receptor. Movement appears to be modulated by Src kinase, is blocked by activators of protein kinase C, and occurs independently of internalization by clathrin-coated pits. Two mutant receptors previously shown to induce an oncogenic phenotype lack the ability to move from caveolae in response to EGF, suggesting that a prolonged residence in this domain may contribute to abnormal cell behavior.  相似文献   

10.
11.
In this work, we have imaged the lateral diffusion of activated epidermal growth factor receptor (EGFR) on cell membrane for studying its internalization pathway. After EGF activation, the mobility of individual EGFR molecules was measured and compared with that in the cells disrupted of clathrin-coated pits and caveolae, the two endocytosis-competent membrane microdomains. The results implicated that activated EGFR molecules associated with clathrin-coated pits but not caveolae at low doses of EGF, whereas they were located in these two domains at high EGF doses. It provided supporting evidence for the occurrence of both clathrin-dependent and caveolae-dependent EGFR endocytosis.  相似文献   

12.
Gangliosides are known to modulate the activation of receptor tyrosine-kinases (RTKs). Recently, we demonstrated the functional relationship between ErbB2 and ganglioside GM(3) in HC11 epithelial cell line. In the present study we investigated, in the same cells, the ErbB2 activation state and its tendency to form stable molecular complexes with the epidermal growth factor receptor (EGFR) and with ganglioside GM(3) upon EGF stimulation. Results from co-immunoprecipitation experiments and western blot analyses indicate that tyrosine-phosphorylated ErbB2 and EGFR monomers and stable ErbB2/EGFR high molecular complexes (heterodimers) are formed following EGF stimulation, even if the receptors co-immunoprecipitates also in the absence of the ligand; these data suggest the existence of pre-dimerization inactive receptor clusters on the cell surface. High performance-thin layer chromatography (HP-TLC) and TLC-immunostaining analyses of the ganglioside fractions extracted from the immunoprecipitates demonstrate that GM(3), but not other gangliosides, is tightly associated to the tyrosine-phosphorylated receptors. Furthermore, we show that GM(3) is preferentially and in a SDS-resistant manner associated to the activated ErbB2/EGFR complexes and EGFR monomer, but not to ErbB2. Altogether our data support the hypothesis that the modulating effects produced by GM(3) on ErbB2 activation are mediated by EGFR.  相似文献   

13.
Several inhibitors of epidermal growth factor receptor (EGFR) kinase and Src family kinases (SFK) were employed to study the role of these kinases in EGFR internalization through clathrin-coated pits. The EGFR kinase-specific compound PD158780 substantially diminished EGFR internalization. PP2, an inhibitor of SFK, had a moderate effect on EGFR internalization in several types of cells, including cells lacking SFK, indicating that the inhibition of endocytosis by PP2 is mediated by kinases other than SFK. In contrast, SU6656, a more specific inhibitor of SFK, did not affect EGFR internalization. To examine what stage of internalization requires receptor kinase activity, we established a quantitative assay based on three-dimensional fluorescence microscopy that measures co-localization of an EGF-rhodamine conjugate and a fluorescently tagged clathrin adaptor protein complex, AP-2. Interestingly, recruitment of EGFR into coated pits did not require physiological temperature because the maximal accumulation of EGFR in coated pits was observed at 4 degrees C. Pretreatment of the cells with PD158780 prevented EGFR recruitment into coated pits, whereas the inhibitor did not block the internalization of receptors that had first been allowed to enter the coated pits at 4 degrees C. These data demonstrate that the activation of receptor kinase is essential for the initial, coated pit recruitment step of endocytosis.  相似文献   

14.
In contrast to the epidermal growth factor (EGF) receptor, ErbB2 is known to remain at the plasma membrane after ligand binding and dimerization. However, why ErbB2 is not efficiently down-regulated has remained elusive. Basically, two possibilities exist: ErbB2 is internalization resistant or it is efficiently recycled after internalization. By a combination of confocal microscopy, immunogold labeling electron microscopy, and biochemical techniques we show that ErbB2 is preferentially associated with membrane protrusions. Moreover, it is efficiently excluded from clathrin-coated pits and is not seen in transferrin receptor-containing endosomes. This pattern is not changed after binding of EGF, heregulin, or herceptin. The exclusion from coated pits is so pronounced that it cannot just be explained by lack of an internalization signal. Although ErbB2 is a raft-associated protein, the localization of ErbB2 to protrusions is not a result of raft binding. Also, an intact actin cytoskeleton is not required for keeping ErbB2 away from coated pits. However, after efficient cross-linking, ErbB2 is removed from protrusions to occur on the bulk membrane, in coated pits, and in endosomes. These data show that ErbB2 is a remarkably internalization-resistant receptor and suggest that the mechanism underlying the firm association of ErbB2 with protrusions also is the reason for this resistance.  相似文献   

15.
To identify proteins that participate in clathrin-mediated endocytosis of the epidermal growth factor receptor (EGFR), 13 endocytic proteins were depleted in HeLa cells using highly efficient small interfering RNAs that were designed using a novel selection algorithm. The effects of small interfering RNAs on the ligand-induced endocytosis of EGFR were compared with those effects on the constitutive internalization of the transferrin receptor. The knock-downs of clathrin heavy chain and dynamin produced maximal inhibitory effects on the internalization of both receptors. Depletion of alpha, beta2, or micro2 subunits of AP-2 reduced EGF and transferrin internalization rates by 40-60%. Down-regulation of several accessory proteins individually had no effect on endocytosis but caused significant inhibition of EGF and transferrin endocytosis when the homologous proteins were depleted simultaneously. Surprisingly, knockdown of clathrin-assembly lymphoid myeloid leukemia protein, CALM, did not influence transferrin endocytosis but considerably affected EGFR internalization. Thus, CALM is the second protein besides Grb2 that appears to play a specific role in EGFR endocytosis. This study demonstrates that the efficient gene silencing by rationally designed small interfering RNA can be used as an approach to functionally analyze the entire cellular machineries, such as the clathrin-coated pits and vesicles.  相似文献   

16.
We have previously demonstrated that epidermal growth factor (EGF) inhibits calcium-dependent chloride secretion via a mechanism involving stimulation of phosphatidylinositol 3-kinase (PI3-K). The muscarinic agonist of chloride secretion, carbachol (CCh), also stimulates an antisecretory pathway that involves transactivation of the EGF receptor (EGFR) but does not involve PI3-K. Here, we have examined if ErbB receptors, other than the EGFR, have a role in regulation of colonic secretion and if differential effects on ErbB receptor activation may explain the ability of the EGFR to propagate diverse signaling pathways in response to EGF versus CCh. Basolateral, but not apical, addition of the ErbB3/ErbB4 ligand alpha-heregulin (HRG; 1-100 ng/ml) inhibited secretory responses to CCh (100 microM) across voltage-clamped T(84) epithelial cells. Immunoprecipitation/Western blot studies revealed that HRG (100 ng/ml) stimulated tyrosine phosphorylation and dimerization of ErbB3 and ErbB2, but had no effect on phosphorylation of the EGFR. HRG also stimulated recruitment of the p85 subunit of PI3-K to ErbB3/ErbB2 receptor dimers, while the PI3-K inhibitor, wortmannin (50 nM), completely reversed the inhibitory effect of HRG on CCh-stimulated secretion. Further studies revealed that, while both EGF (100 ng/ml) and CCh (100 microM) stimulated phosphorylation of the EGFR, only EGF stimulated phosphorylation of ErbB2, and neither stimulated ErbB3 phosphorylation. EGF, but not CCh, stimulated the formation of EGFR/ErbB2 receptor dimers and the recruitment of p85 to ErbB2. We conclude that ErbB2 and ErbB3 are expressed in T(84) cells and are functionally coupled to inhibition of calcium-dependent chloride secretion. Differential dimerization with other ErbB family members may underlie the ability of the EGFR to propagate diverse inhibitory signals in response to activation by EGF or transactivation by CCh.  相似文献   

17.
Selective enrichment of clathrin-coated membranes by anticlathrin immunoadsorption was used to examine the internalization of receptor-ligand complexes through coated pits. Using Staphylococcus aureus-anticlathrin antibody and [35S]methionine-labeled KB cells, the kinetics of association of the epidermal growth factor (EGF-R) and transferrin receptors (TF-R) with coated membranes were directly examined. The accumulation of EGF-R in coated pits at the cell surface was dependent upon EGF binding. EGF-R then passed sequentially through a compartment which did not react with anticlathrin antibody and a second clathrin-coated compartment. The EGF-R was degraded in lysosomes with a half-life of approximately 41-55 min. The tumor promoter, 4 beta-phorbol 12-myristate 13-acetate, appears to mimic the action of EGF in inducing EGF-R accumulation in coated pits at the cell surface and receptor internalization. In contrast to the results with EGF-R, the TF-R was found in clathrin-coated membranes in the presence or absence of TF, and the concentration of TF-R in clathrin-coated membranes did not significantly change with time. The method presented should be of great utility for examining the biochemical changes that occur during the receptor-mediated endocytosis and sorting of ligands and receptors.  相似文献   

18.
Ligand binding causes the EGF receptor (EGFR) to become ubiquitinated by Cbl upon association with the adaptor protein Grb2. We have investigated the role of ubiquitin and Grb2 in ligand-induced endocytosis of the EGFR. Incubation of cells with EGF on ice caused translocation of Grb2 and Cbl from the cytosol to the rim of coated pits. Grb2 with point mutations in both SH3 domains inhibited recruitment of the EGFR to clathrin-coated pits, in a Ras-independent manner. On overexpression of the Cbl-binding protein Sprouty, ubiquitination of the EGFR was inhibited, the EGFR was recruited only to the rim of coated pits, and endocytosis of the EGFR was inhibited. Conjugation-defective ubiquitin similarly inhibited recruitment of EGF-EGFR to clathrin-coated pits. Even though this does not prove that cargo must be ubiquitinated, this indicates the importance of interaction of ubiquitinated protein(s) with proteins harboring ubiquitin-interacting domains. We propose that Grb2 mediates transient anchoring of the EGFR to an Eps15-containing molecular complex at the rim of coated pits and that Cbl-induced ubiquitination of the EGFR allows relocation of EGFR from the rim to the center of clathrin-coated pits.  相似文献   

19.
Gangliosides are well-known regulators of cell differentiation through specific interactions with growth factor receptors. Previously, our group provided the first evidence about stable association of ganglioside GM3 to EGFR/ErbB2 heterodimers in mammary epithelial cells. Goals of the present study were to better define the role of gangliosides in EGFR/ErbB2 heterodimerization and receptor phosphorylation events and to analyze their involvement in mammary cell differentiation. Experiments have been conducted using the ceramide analogue (+/−)-treo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ceramide glucosyltransferase resulting in the endogenous ganglioside depletion, and the lactogenic hormone mix DIP (dexamethasone, insulin, prolactin), which induces cell differentiation and β-casein mRNA synthesis. In addition, treatments of ganglioside-depleted cells with exogenous GM3 have been carried out to ascertain the specific involvement of this ganglioside. Results from co-immunoprecipitation and Western blot experiments have shown that the endogenous ganglioside depletion resulted in the disappearance of SDS-stable EGFR/ErbB2 heterodimers and in the appearance of tyrosine-phosphorylated EGFR also in the absence of EGF stimulation; exogenous GM3 added in combination with [D]-PDMP reversed both these effects. In contrast, the tyrosine phosphorylation of ErbB2 in ganglioside-depleted cells occurred only after EGF stimulation. Moreover, when ganglioside-depleted cells were treated with DIP in absence of EGF, β-casein gene expression appeared strongly down-regulated, and β-casein mRNA levels were partially restored by exogenous GM3 treatment. Altogether, although the involvement of other ganglioside species cannot be excluded, these findings sustain the ganglioside GM3 as an essential molecule for EGFR/ErbB2 heterodimer stability and important regulator of EGFR tyrosine phosphorylation, but it is not crucial for tyrosine phosphorylation of the heterodimerization partner ErbB2. Moreover, modulation of EGFR phosphorylation may explain how gangliosides contribute to regulate the lactogenic hormone-induced mammary cell differentiation.  相似文献   

20.
Administration of pharmacological doses of epidermal growth factor (EGF) or transforming growth factor-alpha (TGF-alpha) in young rats stimulates gastric mucosal proliferation, but, in aged rats, the same treatment inhibits proliferation. This may be due to enhanced ligand-induced internalization of EGF receptor (EGFR). In support of this, we demonstrated that although a single injection of EGF (10 microg/kg) or TGF-alpha (5 microg/kg) in young (4-6 mo old) rats greatly increased membrane-associated EGFR tyrosine kinase activity, the same treatment slightly inhibited the enzyme activity in aged (24 mo old) rats. This treatment also produced a greater abundance of punctate cytoplasmic EGFR staining in gastric epithelium of aged rats, consistent with EGFR internalization. In vitro analyses demonstrated that exposure of isolated gastric mucosal cells from aged but not young rats to 100 pM TGF-alpha resulted in marked increases in intracellular EGFR tyrosine kinase activity and that induction of EGFR tyrosine kinase activity in mucosal membranes from aged rats occurred at doses 1,000-fold less than those required in young rats. Our data suggest that aging enhances sensitivity of the gastric mucosa to EGFR ligands. This may partly explain EGFR-mediated inhibition of gastric mucosal proliferation in aged rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号