首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mcm2, Mcm3, and Mcm5/Cdc46 are conserved proteins essential for the initiation of DNA synthesis at replication origins in Saccharomyces cerevisiae. The accumulation of these proteins in the nucleus before the onset of DNA synthesis suggests that they play a role in restricting DNA synthesis to once per cell cycle. In this work, we show that Mcm2, Mcm3, and Mcm5 self-interact and interact with one another to form complexes. Mcm2 and Mcm3 are abundant proteins, present in approximately 4 X 10(4) and 2 X 10(5) copies per cell, respectively. Reducing the dosage of Mcm2 by half results in diminished usage of specific replication origins. These results together suggest that a significant molar excess of Mcm proteins relative to replication origins is required for the proper initiation of all replication origins.  相似文献   

2.
Mcm1 binds replication origins   总被引:8,自引:0,他引:8  
  相似文献   

3.
Cdc45, which binds to the minichromosomal maintenance (Mcm) proteins, has a pivotal role in the initiation and elongation steps of chromosomal DNA replication in eukaryotes. Here we show that throughout the cell cycle in Saccharomyces cerevisiae, Cdc45 forms a complex with a novel factor, Sld3. Consistently, Sld3 and Cdc45 associate simultaneously with replication origins in the chromatin immunoprecipitation assay: both proteins associate with early-firing origins in G(1) phase and with late-firing origins in late S phase. Moreover, the origin associations of Sld3 and Cdc45 are mutually dependent. The temperature-sensitive sld3 mutation confers a defect in DNA replication at the restrictive temperature and reduces an interaction not only between Sld3 and Cdc45, but also between Cdc45 and Mcm2. These results suggest that the Sld3-Cdc45 complex associates with replication origins through Mcm proteins. At the restrictive temperature in sld3-5 cells, replication factor A, a single-strand DNA binding protein, does not associate with origins. Therefore, the origin association of Sld3-Cdc45 complex is prerequisite for origin unwinding in the initiation of DNA replication.  相似文献   

4.
BACKGROUND: In the budding yeast Saccharomyces cerevisiae, the cyclin-dependent kinases of the Clb/Cdc28 family restrict the initiation of DNA replication to once per cell cycle by preventing the re-assembly of pre-replicative complexes (pre-RCs) at replication origins that have already initiated replication. This assembly involves the Cdc6-dependent loading of six minichromosome maintenance (Mcm) proteins, Mcm2-7, onto origins. How Clb/Cdc28 kinases prevent pre-RC assembly is not understood. RESULTS: In living cells, the Mcm proteins were found to colocalize in a cell-cycle-regulated manner. Mcm2-4, 6 and 7 were concentrated in the nucleus in G1 phase, gradually exported to the cytoplasm during S phase, and excluded from the nucleus by G2 and M phase. Tagging any single Mcm protein with the SV40 nuclear localization signal made all Mcm proteins constitutively nuclear. In the absence of functional Cdc6, Clb/Cdc28 kinases were necessary and sufficient for efficient net nuclear export of a fusion protein between Mcm7 and the green fluorescent protein (Mcm7-GFP), whereas inactivation of these kinases at the end of mitosis coincided with the net nuclear import of Mcm7-GFP. In contrast, in the presence of functional Cdc6, which loads Mcm proteins onto chromatin, S-phase progression as well as Clb/Cdc28 kinases was required for Mcm-GFP export. CONCLUSIONS: We propose that Clb/Cdc28 kinases prevent pre-RC reassembly in part by promoting the net nuclear export of Mcm proteins. We further propose that Mcm proteins become refractory to this regulation when they load onto chromatin and must be dislodged by DNA replication before they can be exported. Such an arrangement could ensure that Mcm proteins complete their replication function before they are removed from the nucleus.  相似文献   

5.
Mcm10 (Dna43) is an essential protein for the initiation of DNA replication in Saccharomyces cerevisiae. Recently, we identified a human Mcm10 homolog and found that it is regulated by proteolysis and phosphorylation in a cell cycle-dependent manner and that it binds chromatin exclusively during the S phase of the cell cycle. However, the precise roles that Mcm10 plays are still unknown. To study the localization dynamics of human Mcm10, we established HeLa cell lines expressing green fluorescent protein (GFP)-tagged Mcm10. From early to mid-S phase, GFP-Mcm10 appeared in discrete nuclear foci. In early S phase, several hundred foci appeared throughout the nucleus. In mid-S phase, the foci appeared at the nuclear periphery and nucleolar regions. In the late S and G phases, GFP-Mcm10 was localized to nucleoli. Although (2)the distributions of GFP-Mcm10 during the S phase resembled those of replication foci, GFP-Mcm10 foci did not colocalize with sites of DNA synthesis in most cases. Furthermore, the transition of GFP-Mcm10 distribution patterns preceded changes in replication foci patterns or proliferating cell nuclear antigen foci patterns by 30-60 min. These results suggest that human Mcm10 is temporarily recruited to the replication sites 30-60 min before they replicate and that it dissociates from chromatin after the activation of the prereplication complex.  相似文献   

6.
Mcm10 is a conserved eukaryotic DNA replication factor whose function has remained elusive. We report here that Mcm10 binding to replication origins in budding yeast is cell cycle regulated and dependent on the putative helicase, Mcm2-7. Mcm10 is also an essential component of the replication fork. A fraction of Mcm10 binds to DNA, as shown by histone association assays that allow for the study of chromatin binding in vivo. However, Mcm10 is also required to maintain steady-state levels of DNA polymerase-alpha (polalpha). In temperature-sensitive mcm10-td mutants, depletion of Mcm10 during S phase results in degradation of the catalytic subunit of polalpha, without affecting other fork components such as Cdc45. We propose that Mcm10 stabilizes polalpha and recruits the complex to replication origins. During elongation, Mcm10 is required for the presence of polalpha at replication forks and may coordinate DNA synthesis with DNA unwinding by the Mcm2-7 complex.  相似文献   

7.
Leon RP  Tecklenburg M  Sclafani RA 《Genetics》2008,179(4):1757-1768
Mcm proteins are an important family of evolutionarily conserved helicases required for DNA replication in eukaryotes. The eukaryotic Mcm complex consists of six paralogs that form a heterohexameric ring. Because the intact Mcm2-7 hexamer is inactive in vitro, it has been difficult to determine the precise function of the different subunits. The solved atomic structure of an archaeal minichromosome maintenance (MCM) homolog provides insight into the function of eukaryotic Mcm proteins. The N-terminal positively charged central channel in the archaeal molecule consists of beta-hairpin domains essential for DNA binding in vitro. Eukaryotic Mcm proteins also have beta-hairpin domains, but their function is unknown. With the archaeal atomic structure as a guide, yeast molecular genetics was used to query the function of the beta-hairpin domains in vivo. A yeast mcm5 mutant with beta-hairpin mutations displays defects in the G1/S transition of the cell cycle, the initiation phase of DNA replication, and in the binding of the entire Mcm2-7 complex to replication origins. A similar mcm4 mutation is synthetically lethal with the mcm5 mutation. Therefore, in addition to its known regulatory role, Mcm5 protein has a positive role in origin binding, which requires coordination by all six Mcm2-7 subunits in the hexamer.  相似文献   

8.
Using a cytological assay to monitor the successive chromatin association of replication proteins leading to replication initiation, we have investigated the function of fission yeast Cdc23/Mcm10 in DNA replication. Inactivation of Cdc23 before replication initiation using tight degron mutations has no effect on Mcm2 chromatin association, and thus pre-replicative complex (pre-RC) formation, although Cdc45 chromatin binding is blocked. Inactivating Cdc23 during an S phase block after Cdc45 has bound causes a small reduction in Cdc45 chromatin binding, and replication does not terminate in the absence of Mcm10 function. These observations show that Cdc23/Mcm10 function is conserved between fission yeast and Xenopus, where in vitro analysis has indicated a similar requirement for Cdc45 binding, but apparently not compared with Saccharomyces cerevisiae, where Mcm10 is needed for Mcm2 chromatin binding. However, unlike the situation in Xenopus, where Mcm10 chromatin binding is dependent on Mcm2-7, we show that the fission yeast protein is bound to chromatin throughout the cell cycle in growing cells, and only displaced from chromatin during quiescence. On return to growth, Cdc23 chromatin binding is rapidly reestablished independently from pre-RC formation, suggesting that chromatin association of Cdc23 provides a link between proliferation and competence to execute DNA replication.  相似文献   

9.
The replication fork helicase in eukaryotic cells is comprised of Cdc45, Mcm2-7, and GINS (CMG complex). In budding yeast, Sld3, Sld2, and Dpb11 are required for the initiation of DNA replication, but Sld3 and Dpb11 do not travel with the replication fork. Sld3 and Cdc45 bind to early replication origins during the G(1) phase of the cell cycle, whereas Sld2, GINS, polymerase ε, and Dpb11 form a transient preloading complex that associates with origins during S phase. We show here that Sld3 binds tightly to origin single-stranded DNA (ssDNA). CDK-phosphorylated Sld3 binds to origin ssDNA with similar high affinity. Origin ssDNA does not disrupt the interaction between Sld3 and Dpb11, and origin ssDNA does not disrupt the interaction between Sld3 and Cdc45. However, origin ssDNA substantially disrupts the interaction between Sld3 and Mcm2-7. GINS and Sld3 compete with one another for binding to Mcm2-7. However, in a mixture of Sld3, GINS, and Mcm2-7, origin ssDNA inhibits the interaction between Sld3 and Mcm2-7, whereas origin ssDNA promotes the association between GINS and Mcm2-7. We also show that origin single-stranded DNA promotes the formation of the CMG complex. We conclude that origin single-stranded DNA releases Sld3 from Mcm2-7, allowing GINS to bind Mcm2-7.  相似文献   

10.
Eukaryotic DNA replication is initiated at multiple origins of replication, where many replication proteins assemble under the control of the cell cycle [1]. A key process of replication initiation is to convert inactive Mcm2-7 to active Cdc45-Mcm-GINS (CMG) replicative helicase [2]. However, it is not known whether the CMG assembly would automatically activate its helicase activity and thus assemble the replisome. Mcm10 is an evolutionally conserved essential protein required for the initiation of replication [3, 4]. Although the roles of many proteins involved in the initiation are understood, the role of Mcm10 remains controversial [5-9]. To characterize Mcm10 in more detail, we constructed budding yeast cells bearing a degron-fused Mcm10 protein that can be efficiently degraded in response to auxin. In the absence of Mcm10, a stable CMG complex was assembled at origins. However, subsequent translocation of CMG, replication protein A loading to origins, and the intra-S checkpoint activation were severely diminished, suggesting that origin unwinding is defective. We also found that Mcm10 associates with origins during initiation in an S-cyclin-dependent kinase- and Cdc45-dependent manner. Thus, Mcm10 plays an essential role in functioning of the CMG replicative helicase independent of assembly of a stable CMG complex at origins.  相似文献   

11.
We have previously shown that replication of fission yeast chromosomes is initiated in distinct regions. Analyses of autonomous replicating sequences have suggested that regions required for replication are very different from those in budding yeast. Here, we present evidence that fission yeast replication origins are specifically associated with proteins that participate in initiation of replication. Most Orp1p, a putative subunit of the fission yeast origin recognition complex (ORC), was found to be associated with chromatin-enriched insoluble components throughout the cell cycle. In contrast, the minichromosome maintenance (Mcm) proteins, SpMcm2p and SpMcm6p, encoded by the nda1(+)/cdc19(+) and mis5(+) genes, respectively, were associated with chromatin DNA only during the G(1) and S phases. Immunostaining of spread nuclei showed SpMcm6p to be localized at discrete foci on chromatin during the G(1) and S phases. A chromatin immunoprecipitation assay demonstrated that Orp1p was preferentially localized at the ars2004 and ars3002 origins of the chromosome throughout the cell cycle, while SpMcm6p was associated with these origins only in the G(1) and S phases. Both Orp1p and SpMcm6p were associated with a 1-kb region that contains elements required for autonomous replication of ars2004. The results suggest that the fission yeast ORC specifically interacts with chromosomal replication origins and that Mcm proteins are loaded onto the origins to play a role in initiation of replication.  相似文献   

12.
To ensure fidelity in genome duplication, eukaryotes restrict DNA synthesis to once every cell division by a cascade of regulated steps. Central to this cascade is the periodic assembly of the hexameric MCM2-7 complex at replication origins. However, in Saccharomyces cerevisiae, only a fraction of each MCM protein is able to assemble into hexamers and associate with replication origins during M phase, suggesting that MCM complex assembly and recruitment may be regulated post-translationally. Here we show that a small fraction of Mcm3p is polyubiquitinated at the onset of MCM complex assembly. Reducing the rate of ubiquitination by uba1-165, a suppressor of mcm3-10, restored the interaction of Mcm3-10p with subunits of the MCM complex and its recruitment to the replication origin. Possible roles for ubiquitinated Mcm3p in the assembly of the MCM complex at replication origins are discussed.  相似文献   

13.
Mcm2-7 proteins are generally considered to function as a heterohexameric complex, providing helicase activity for the elongation step of DNA replication. These proteins are loaded onto replication origins in M-G1 phase in a process termed licensing or pre-replicative complex formation. It is likely that Mcm2-7 proteins are loaded onto chromatin simultaneously as a pre-formed hexamer although some studies suggest that subcomplexes are recruited sequentially. To analyze this process in fission yeast, we have compared the levels and chromatin binding of Mcm2-7 proteins during the fission yeast cell cycle. Mcm subunits are present at approximately 1 x 10(4) molecules/cell and are bound with approximately equal stoichiometry on chromatin in G1/S phase cells. Using a single cell assay, we have correlated the timing of chromatin association of individual Mcm subunits with progression through mitosis. This showed that Mcm2, 4 and 7 associate with chromatin at about the same stage of anaphase, suggesting that licensing involves the simultaneous binding of these subunits. We also examined Mcm2-7 chromatin association when cells enter a G0-like quiescent state. Chromatin binding is lost in this transition in a process that does not require DNA replication or the selective degradation of specific subunits.  相似文献   

14.
The CDC45 gene of Saccharomyces cerevisiae was isolated by complementation of the cold-sensitive cdc45-1 mutant and shown to be essential for cell viability. Although CDC45 genetically interacts with a group of MCM genes (CDC46, CDC47, and CDC54), the predicted sequence of its protein product reveals no significant sequence similarity to any known Mcm family member. Further genetic characterization of the cdc45-1 mutant demonstrated that it is synthetically lethal with orc2-1, mcm2-1, and mcm3-1. These results not only reveal a functional connection between the origin recognition complex (ORC) and Cdc45p but also extend the CDC45-MCM genetic interaction to all known MCM family members that were shown to be involved in replication initiation. Initiation of DNA replication in cdc45-1 cells was defective, causing a delayed entry into S phase at the nonpermissive temperature, as well as a high plasmid loss rate which could be suppressed by tandem copies of replication origins. Furthermore, two-dimensional gels directly showed that chromosomal origins fired less frequently in cdc45-1 cells at the nonpermissive temperature. These findings suggest that Cdc45p, ORC, and Mcm proteins act in concert for replication initiation throughout the genome.  相似文献   

15.
During S phase, following activation of the S phase CDKs and the DBF4-dependent kinases (DDK), double hexamers of Mcm2-7 at licensed replication origins are activated to form the core replicative helicase. Mcm10 is one of several proteins that have been implicated from work in yeasts to play a role in forming a mature replisome during the initiation process. Mcm10 has also been proposed to play a role in promoting replisome stability after initiation has taken place. The role of Mcm10 is particularly unclear in metazoans, where conflicting data has been presented. Here, we investigate the role and regulation of Mcm10 in Xenopus egg extracts. We show that Xenopus Mcm10 is recruited to chromatin late in the process of replication initiation and this requires prior action of DDKs and CDKs. We also provide evidence that Mcm10 is a CDK substrate but does not need to be phosphorylated in order to associate with chromatin. We show that in extracts depleted of more than 99% of Mcm10, the bulk of DNA replication still occurs, suggesting that Mcm10 is not required for the process of replication initiation. However, in extracts depleted of Mcm10, the replication fork elongation rate is reduced. Furthermore, the absence of Mcm10 or its phosphorylation by CDK results in instability of replisome proteins on DNA, which is particularly important under conditions of replication stress.  相似文献   

16.
Mcm10 (Dna43) is an essential protein for chromosomal DNA replication in Saccharomyces cerevisiae. Recently, we identified a human Mcm10 homolog that interacts with the mammalian Orc2 and Mcm2-7 complex. We additionally demonstrated that human Mcm10 binds nuclease-resistant nuclear structures during S phase and dissociates from them in G(2) phase. In this study, we have further characterized the subcellular localization, modification, and expression levels of human Mcm10 protein throughout the cell cycle. Human Mcm10 protein decreased in late M phase, remained low during G(1) phase, started to accumulate, and bound chromatin at the onset of S phase. Proteasome inhibitors stabilized Mcm10 levels, suggesting that proteolysis is involved in the down-regulation of the protein in late M/G(1) phase. Dissociation of Mcm10 from chromatin in G(2)/M phase was concomitant with alterations in the electrophoretic mobility of the protein. Treatment with lambda phosphatase revealed that mobility shifts were due to hyperphosphorylation. These results indicate that human Mcm10 is regulated by proteolysis and phosphorylation in a cell cycle-dependent manner. It is further suggested that mammalian Mcm10 is involved in S phase progression, and not the formation of a prereplicative complex, as previously proposed from data on the S. cerevisiae protein.  相似文献   

17.
A strong body of evidence indicates that cyclin-dependent protein kinases are required not only for the initiation of DNA replication but also for preventing over-replication in eukaryotic cells. Mcm proteins are one of the components of the replication licensing system that permits only a single round of DNA replication per cell cycle. It has been reported that Mcm proteins are phosphorylated by the cyclin-dependent kinases in vivo, suggesting that these two factors are cooperatively involved in the regulation of DNA replication. Our group has reported that a 600-kDa Mcm4,6,7 complex has a DNA helicase activity that is probably necessary for the initiation of DNA replication. Here, we examined the in vitro phosphorylation of the Mcm complexes with cyclin A/Cdk2 to understand the interplay between Mcm proteins and cyclin-dependent kinases. The cyclin A/Cdk2 mainly phosphorylated the amino-terminal region of Mcm4 in the Mcm4,6,7 complex. The phosphorylation was associated with the inactivation of its DNA helicase activity. These results raise the possibility that the inactivation of Mcm4,6,7 helicase activity by Cdk2 is a part of the system for regulating DNA replication.  相似文献   

18.
Cyclin-dependent kinases (CDKs) activate the firing of replication origins during the S phase of the cell cycle. They also block re-initiation of DNA replication within a single cell cycle, by preventing the assembly of prereplicative complexes at origins. We show here that, in budding yeast, CDKs exclude the essential prereplicative-complex component Mcm4 from the nucleus. Although origin firing can be triggered by the B-type cyclins only, both G1-phase and B-type cyclins cause exit of Mcm4 from the nucleus. These results suggest that G1 cyclins may diminish the cell's capacity to assemble prereplicative complexes before B-type cyclins trigger origin firing during S phase.  相似文献   

19.
Mcm10 (Dna43), first identified in Saccharomyces cerevisiae, is an essential protein which functions in the initiation of DNA synthesis. Mcm10 is a nuclear protein that is localized to replication origins and mediates the interaction of the Mcm2–7 complex with replication origins. We identified and cloned a human cDNA whose product was structurally homologous to the yeast Mcm10 protein. Human Mcm10 (HsMcm10) is a 98-kDa protein of 874 amino acids which shows 23 and 21% overall similarity to Schizosaccharomyces pombe Cdc23 and S.cerevisiae Mcm10, respectively. The messenger RNA level of HsMcm10 increased at the G1/S-boundary when quiescent human NB1–RGB cells were induced to proliferate as is the case of many replication factors. HsMcm10 associated with nuclease-resistant nuclear structures throughout S phase and dissociated from it in G2 phase. HsMcm10 associated with human Orc2 protein when overexpressed in COS-1 cells. HsMcm10 also interacted with Orc2, Mcm2 and Mcm6 proteins in the yeast two-hybrid system. These results suggest that HsMcm10 may function in DNA replication through the interaction with Orc and Mcm2–7 complexes.  相似文献   

20.
The six minichromosome maintenance proteins (Mcm2–7) are required for both the initiation and elongation of chromosomal DNA, ensuring that DNA replication takes place once, and only once, during the S phase. Here we report on the cloning of a new human Mcm gene (hMcm8) and on characterisation of its protein product. The hMcm8 gene contains the central Mcm domain conserved in the Mcm2–7 gene family, and is expressed in a range of cell lines and human tissues. hMcm8 mRNA accumulates during G1/S phase, while hMcm8 protein is detectable throughout the cell cycle. Immunoprecipitation-based studies did not reveal any participation of hMcm8 in the Mcm3/5 and Mcm2/4/6/7 subcomplexes. hMcm8 localises to the nucleus, although it is devoid of a nuclear localisation signal, suggesting that it binds to a nuclear protein. In the nucleus, the hMcm8 structure-bound fraction is detectable in S, but not in G2/M, phase, as for hMcm3. However, unlike hMcm3, the hMcm8 structure-bound fraction is not detectable in G1 phase. Overall, our data identify a new Mcm protein, which does not form part of the Mcm2–7 complex and which is only structure-bound during S phase, thus suggesting its specific role in DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号