首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Heterotrimeric G proteins, composed of α, β, and γ subunits, are activated by exchange of GDP for GTP on the Gα subunit. Canonically, Gα is stimulated by the guanine-nucleotide exchange factor (GEF) activity of ligand-bound G protein–coupled receptors. However, Gα subunits may also be activated in a noncanonical manner by members of the Ric-8 family, cytoplasmic proteins that also act as GEFs for Gα subunits. We used a signaling pathway active during Drosophila gastrulation as a model system to study Ric-8/Gα interactions. A component of this pathway, the Drosophila12/13 subunit, Concertina (Cta), is necessary to trigger actomyosin contractility during gastrulation events. Ric-8 mutants exhibit similar gastrulation defects to Cta mutants. Here we use a novel tissue culture system to study a signaling pathway that controls cytoskeletal rearrangements necessary for cellular morphogenesis. We show that Ric-8 regulates this pathway through physical interaction with Cta and preferentially interacts with inactive Cta and directs its localization within the cell. We also use this system to conduct a structure–function analysis of Ric-8 and identify key residues required for both Cta interaction and cellular contractility.  相似文献   

3.
Heterotrimeric G-proteins have been proposed to be involved in many aspects of plant disease resistance but their precise role in mediating nonhost disease resistance is not well understood. We evaluated the roles of specific subunits of heterotrimeric G-proteins using knock-out mutants of Arabidopsis Gα, Gβ and Gγ subunits in response to host and nonhost Pseudomonas pathogens. Plants lacking functional Gα, Gβ and Gγ1Gγ2 proteins displayed enhanced bacterial growth and disease susceptibility in response to host and nonhost pathogens. Mutations of single Gγ subunits Gγ1, Gγ2 and Gγ3 did not alter bacterial disease resistance. Some specificity of subunit usage was observed when comparing host pathogen versus nonhost pathogen. Overexpression of both Gα and Gβ led to reduced bacterial multiplication of nonhost pathogen P. syringae pv. tabaci whereas overexpression of Gβ, but not of Gα, resulted in reduced bacterial growth of host pathogen P. syringae pv. maculicola, compared to wild-type Col-0. Moreover, the regulation of stomatal aperture by bacterial pathogens was altered in Gα and Gβ mutants but not in any of the single or double Gγ mutants. Taken together, these data substantiate the critical role of heterotrimeric G-proteins in plant innate immunity and stomatal modulation in response to P. syringae.  相似文献   

4.

Background

Low birth weight (LBW) is associated with increased future risk of insulin resistance and type 2 diabetes mellitus. The underlying molecular mechanisms remain poorly understood. We have previously shown that young LBW men have reduced skeletal muscle expression of PI3K p85α regulatory subunit and p110β catalytic subunit, PKCζ and GLUT4 in the fasting state. The aim of this study was to determine whether insulin activation of the PI3K/Akt and MAPK signalling pathways is altered in skeletal muscle of young adult men with LBW.

Methods

Vastus lateralis muscle biopsies were obtained from 20 healthy 19-yr old men with BW</ = 10th percentile for gestational age (LBW) and 20 normal birth weight controls (NBW), matched for physical fitness and whole-body glucose disposal, prior to (fasting state) and following a 4-hr hyperinsulinemic euglycemic clamp (insulin stimulated state). Expression and phosphorylation of selected proteins was determined by Western blotting.

Principal Findings

Insulin stimulated expression of aPKCζ (p<0.001) and Akt1 (p<0.001) was decreased in muscle of LBW men when compared to insulin stimulated controls. LBW was associated with increased insulin stimulated levels of IRS1 (p<0.05), PI3K p85α (p<0.001) and p110β (p<0.05) subunits, while there was no significant change in these proteins in insulin stimulated control muscle. In addition LBW had reduced insulin stimulated phospho-Akt (Ser 473) (p<0.01), indicative of reduced Akt signalling. Insulin stimulated expression/phosphorylation of all the MAPK proteins studied [p38 MAPK, phospho-p38 MAPK (Thr180/Tyr182), phospho-ERK (Thr 202/Tyr204), JNK1, JNK2 and phospho-JNK (Thr 183/Tyr185)] was not different between groups.

Conclusions

We conclude that altered insulin activation of the PI3K/Akt but not the MAPK pathway precedes and may contribute to development of whole-body insulin resistance and type 2 diabetes in men with LBW.  相似文献   

5.
Many bacterial toxins covalently modify components of eukaryotic signalling pathways in a highly specific manner, and can be used as powerful tools to decipher the function of their molecular target(s). The Pasteurella multocida toxin (PMT) mediates its cellular effects through the activation of members of three of the four heterotrimeric G-protein families, Gq, G12 and Gi. PMT has been shown by others to lead to the deamidation of recombinant Gαi at Gln-205 to inhibit its intrinsic GTPase activity. We have investigated modification of native Gα subunits mediated by PMT in Swiss 3T3 cells using 2-D gel electrophoresis and antibody detection. An acidic change in the isoelectric point was observed for the Gα subunit of the Gq and Gi families following PMT treatment of Swiss 3T3 cells, which is consistent with the deamidation of these Gα subunits. Surprisingly, PMT also induced a similar modification of Gα11, a member of the Gq family of G-proteins that is not activated by PMT. Furthermore, an alkaline change in the isoelectric point of Gα13 was observed following PMT treatment of cells, suggesting differential modification of this Gα subunit by PMT. Gs was not affected by PMT treatment. Prolonged treatment with PMT led to a reduction in membrane-associated Gαi, but not Gαq. We also show that PMT inhibits the GTPase activity of Gq.  相似文献   

6.
Because T cell differentiation leads to an expanded repertoire of chemokine receptors, a subgroup of G protein-coupled receptors, we hypothesized that the repertoire of G proteins might be altered in parallel. We analyzed the abundance of mRNA and/or protein of six G protein α-subunits in human CD4+ and CD8+ T cell subsets from blood. Although most G protein α-subunits were similarly expressed in all subsets, the abundance of Gαo, a protein not previously described in hematopoietic cells, was much higher in memory versus naive cells. Consistent with these data, activation of naive CD4+ T cells in vitro significantly increased the abundance of Gαo in cells stimulated under nonpolarizing or TH17 (but not TH1 or TH2)-polarizing conditions. In functional studies, the use of a chimeric G protein α-subunit, Gαqo5, demonstrated that chemokine receptors could couple to Gαo-containing G proteins. We also found that Gαi1, another α-subunit not described previously in leukocytes, was expressed in naive T cells but virtually absent from memory subsets. Corresponding to their patterns of expression, siRNA-mediated knockdown of Gαo in memory (but not naive) and Gαi1 in naive (but not memory) CD4+ T cells inhibited chemokine-dependent migration. Moreover, although even in Gαo- and Gαi1-expressing cells mRNAs of these α-subunits were much less abundant than Gαi2 or Gαi3, knockdown of any of these subunits impaired chemokine receptor-mediated migration similarly. Together, our data reveal a change in the repertoire of Gαi/o subunits during T cell differentiation and suggest functional equivalence among Gαi/o subunits irrespective of their relative abundance.  相似文献   

7.
The Kluyveromyces lactis heterotrimeric G protein is a canonical Gαβγ complex; however, in contrast to Saccharomyces cerevisiae, where the Gγ subunit is essential for mating, disruption of the KlGγ gene yielded cells with almost intact mating capacity. Expression of a nonfarnesylated Gγ, which behaves as a dominant-negative in S. cerevisiae, did not affect mating in wild-type and ΔGγ cells of K. lactis. In contrast to the moderate sterility shown by the single ΔKlGα, the double ΔKlGα ΔKlGγ mutant displayed full sterility. A partial sterile phenotype of the ΔKlGγ mutant was obtained in conditions where the KlGβ subunit interacted defectively with the Gα subunit. The addition of a CCAAX motif to the C-end of KlGβ, partially suppressed the lack of both KlGα and KlGγ subunits. In cells lacking KlGγ, the KlGβ subunit cofractionated with KlGα in the plasma membrane, but in the ΔKlGα ΔKlGγ strain was located in the cytosol. When the KlGβ-KlGα interaction was affected in the ΔKlGγ mutant, most KlGβ fractionated to the cytosol. In contrast to the generic model of G-protein function, the Gβ subunit of K. lactis has the capacity to attach to the membrane and to activate mating effectors in absence of the Gγ subunit.  相似文献   

8.
Loss of neuronal protein stargazin (γ2) is associated with recurrent epileptic seizures and ataxia in mice. Initially, due to homology to the skeletal muscle calcium channel γ1 subunit, stargazin and other family members (γ3–8) were classified as γ subunits of neuronal voltage-gated calcium channels (such as CaV2.1-CaV2.3). Here, we report that stargazin interferes with G protein modulation of CaV2.2 (N-type) channels expressed in Xenopus oocytes. Stargazin counteracted the Gβγ-induced inhibition of CaV2.2 channel currents, caused either by coexpression of the Gβγ dimer or by activation of a G protein-coupled receptor. Expression of high doses of Gβγ overcame the effects of stargazin. High affinity Gβγ scavenger proteins m-cβARK and m-phosducin produced effects similar to stargazin. The effects of stargazin and m-cβARK were not additive, suggesting a common mechanism of action, and generally independent of the presence of the CaVβ3 subunit. However, in some cases, coexpression of CaVβ3 blunted the modulation by stargazin. Finally, the Gβγ-opposing action of stargazin was not unique to CaV2.2, as stargazin also inhibited the Gβγ-mediated activation of the G protein-activated K+ channel. Purified cytosolic C-terminal part of stargazin bound Gβγ in vitro. Our results suggest that the regulation by stargazin of biophysical properties of CaV2.2 are not exerted by direct modulation of the channel but via a Gβγ-dependent mechanism.  相似文献   

9.
We have cloned and characterized several cDNAs coding for G-protein inhibitory α subunits (Gai) from a chick brain cDNA library. Based on homology to Ga subunits from other eukaryotes, these clones were designated chick Gαil and Gαi2. On the deduced amino-acid level, Gαi1 and Gαi2 were found to be 98 and 95% identical to rat Goal and Gαi2, respectively. Using RNase protection analysis, the Gαi1 and Gαi2 mRNAs were found to be expressed in chick atria, ventricle, lung, liver, brain and kidney.  相似文献   

10.
Receptor-mediated activation of heterotrimeric G proteins leading to dissociation of the Gα subunit from Gβγ is a highly conserved signaling strategy used by numerous extracellular stimuli. Although Gβγ subunits regulate a variety of effectors, including kinases, cyclases, phospholipases, and ion channels (Clapham, D.E., and E.J. Neer. 1993. Nature (Lond.). 365:403–406), few tools exist for probing instantaneous Gβγ-effector interactions, and little is known about the kinetic contributions of effectors to the signaling process. In this study, we used the atrial muscarinic K+ channel, which is activated by direct interactions with Gβγ subunits (Logothetis, D.E., Y. Kurachi, J. Galper, E.J. Neer, and D.E. Clap. 1987. Nature (Lond.). 325:321–326; Wickman, K., J.A. Iniguez-Liuhi, P.A. Davenport, R. Taussig, G.B. Krapivinsky, M.E. Linder, A.G. Gilman, and D.E. Clapham. 1994. Nature (Lond.). 366: 654–663; Huang, C.-L., P.A. Slesinger, P.J. Casey, Y.N. Jan, and L.Y. Jan. 1995. Neuron. 15:1133–1143), as a sensitive reporter of the dynamics of Gβγ-effector interactions. Muscarinic K+ channels exhibit bursting behavior upon G protein activation, shifting between three distinct functional modes, characterized by the frequency of channel openings during individual bursts. Acetylcholine concentration (and by inference, the concentration of activated Gβγ) controls the fraction of time spent in each mode without changing either the burst duration or channel gating within individual modes. The picture which emerges is of a Gβγ effector with allosteric regulation and an intrinsic “off” switch which serves to limit its own activation. These two features combine to establish exquisite channel sensitivity to changes in Gβγ concentration, and may be indicative of the factors regulating other Gβγ-modulated effectors.  相似文献   

11.
Our laboratory has identified a number of small molecules that bind to G protein βγ subunits (Gβγ) by competing for peptide binding to the Gβγ “hot spot.” M119/Gallein were identified as inhibitors of Gβγ subunit signaling. Here we examine the activity of another molecule identified in this screen, 12155, which we show that in contrast to M119/Gallein had no effect on Gβγ-mediated phospholipase C or phosphoinositide 3-kinase (PI3K) γ activation in vitro. Also in direct contrast to M119/Gallein, 12155 caused receptor-independent Ca2+ release, and activated other downstream targets of Gβγ including extracellular signal regulated kinase (ERK), protein kinase B (Akt) in HL60 cells differentiated to neutrophils. We show that 12155 releases Gβγ in vitro from Gαi1β1γ2 heterotrimers by causing its dissociation from GαGDP without inducing nucleotide exchange in the Gα subunit. We used this novel probe to examine the hypothesis that Gβγ release is sufficient to direct chemotaxis of neutrophils in the absence of receptor or G protein α subunit activation. 12155 directed chemotaxis of HL60 cells and primary neutrophils in a transwell migration assay with responses similar to those seen for the natural chemotactic peptide n-formyl-Met-Leu-Phe. These data indicate that release of free Gβγ is sufficient to drive directional chemotaxis in a G protein-coupled receptor signaling-independent manner.  相似文献   

12.
Heterotrimeric G proteins are critical regulators of growth and asexual and sexual development in the filamentous fungus Neurospora crassa. Three Gα subunits (GNA-1, GNA-2, and GNA-3), one Gβ subunit (GNB-1), and one Gγ subunit (GNG-1) have been functionally characterized, but genetic epistasis relationships between Gβ and Gα subunit genes have not been determined. Physical association between GNB-1 and FLAG-tagged GNG-1 has been previously demonstrated by coimmunoprecipitation, but knowledge of the Gα binding partners for the Gβγ dimer is currently lacking. In this study, the three N. crassa Gα subunits are analyzed for genetic epistasis with gnb-1 and for physical interaction with the Gβγ dimer. We created double mutants lacking one Gα gene and gnb-1 and introduced constitutively active, GTPase-deficient alleles for each Gα gene into the Δgnb-1 background. Genetic analysis revealed that gna-3 is epistatic to gnb-1 with regard to negative control of submerged conidiation. gnb-1 is epistatic to gna-2 and gna-3 for aerial hyphal height, while gnb-1 appears to act upstream of gna-1 and gna-2 during aerial conidiation. None of the activated Gα alleles restored female fertility to Δgnb-1 mutants, and the gna-3Q208L allele inhibited formation of female reproductive structures, consistent with a need for Gα proteins to cycle through the inactive GDP-bound form for these processes. Coimmunoprecipitation experiments using extracts from the gng-1-FLAG strain demonstrated that the three Gα proteins interact with the Gβγ dimer. The finding that the Gβγ dimer interacts with all three Gα proteins is supported by epistasis between gnb-1 and gna-1, gna-2, and gna-3 for at least one function.  相似文献   

13.
We studied the mechanism of sphingosylphosphorylcholine (SPC)-induced contraction in feline ileal smooth muscle cells. Western blotting revealed that G protein subtypes of Gαi1, Gαi3 and Gαo existed in feline ileum. Gαi3 antibody penetration into permeabilized cells decreased SPC-induced contraction. In addition, incubation of [35S]guanosine 5′-O-(3-thiotriphosphate) ([35S]GTPγS) with membrane fraction increased its binding to Gαi3 subtype after SPC treatment, suggesting that the signalling pathways invoked by SPC were mediated by Gαi3 protein. MAPK kinase (MEK) inhibitor PD98059 blocked the contraction significantly, but p38 mitogen-activated protein kinase (MAPK) inhibitor SB202190 did not. Chelerythrine and neomycin also inhibited the contraction. However, cotreatment of PD98059 and chelerythrine showed no significant difference. Phosphorylation of p44/42 MAPK was increased by SPC treatment, which was reversed by pretreatment of inhibitors of signalling molecules that decreased SPC-induced contraction previously. The same result was obtained in the assay of MAPK activity.  相似文献   

14.
In voltage-dependent Ca2+ channels, the α1 and β subunits interact via two cytoplasmic regions defined as the Alpha Interaction Domain (AID) and Beta Interaction Domain (BID). Several novel amino acids for that interaction have now been mapped in both domains by point mutations. It was found that three of the nine amino acids in AID and four of the eight BID amino acids tested were essential for the interaction. Whereas the important AID amino acids were clustered around five residues, the important BID residues were more widely distributed within a larger 16 amino acid sequence. The affinity of the AIDA GST fusion protein for the four interacting β1b BID mutants was not significantly altered compared with the wild-type β1b despite the close localization of mutated residues to disruptive BID amino acids. Expression of these interactive β mutants with the full-length α1A subunit only slightly modified the stimulation efficiency when compared with the wild-type β1b subunit. Our data suggest that non-disruptive BID sequence alterations do not dramatically affect the β subunit-induced current stimulation.  相似文献   

15.
G proteins are heterotrimeric GTPases that play a key role in signal transduction. The α subunit of Gs bound to GTP is capable of activating adenylyl cyclase. The amino acid sequences derived from two X. laevis cDNA clones that apparently code for Gsα subunits are 92% identical to those found in the short form of human Gsα. Despite this high homology, the X. laevis Gsα clones expressed in vitro, yielded a protein that are not able to activate the adenylyl cyclase present in S49 cyc membranes in contrast with human Gsα similarly expressed. This finding suggested that the few amino acid substitutions found in the amphibian subunit are important in defining the functionality of the human Gsα. The construction of chimeras composed of different fractions of the cDNAs of the two species was adopted as an approach in determining the regions of the molecule important in its functionality in this assay. Four pairs of chimeras were constructed using reciprocal combinations of the cDNAs coding for human and Xenopus Gsα. These eight constructs were expressed in vitro and equivalent amounts of the resulting proteins were assayed in the activation of adenylyl cyclase with GTPγs and isoproterenol. The results obtained here clearly indicate that the Gα sequence that extends from amino acid 70 to 140, is important for the functionality of human Gsα in activating adenylyl cyclase.  相似文献   

16.
Heterotrimeric G-proteins, comprising of Gα, Gβ, and Gγ subunits, are important signal transducers which regulate many aspects of fundamental growth and developmental processes in all eukaryotes. Initial studies in model plants Arabidopsis and rice suggest that the repertoire of plant G-protein is much simpler than that observed in metazoans. In order to assess the consequence of whole genome triplication events within Brassicaceae family, we investigated the multiplicity of G-protein subunit genes in mesohexaploid Brassica rapa, a globally important vegetable and oilseed crop. We identified one Gα (BraA.Gα1), three Gβ (BraA.Gβ1, BraA.Gβ2, and BraA.Gβ3), and five Gγ (BraA.Gγ1, BraA.Gγ2, BraA.Gγ3, BraA.Gγ4, and BraA.Gγ5) genes from B. rapa, with a possibility of 15 Gαβγ heterotrimer combinations. Our analysis suggested that the process of genome triplication coupled with gene-loss (gene-fractionation) phenomenon have shaped the quantitative and sequence diversity of G-protein subunit genes in the extant B. rapa genome. Detailed expression analysis using qRT-PCR assays revealed that the G-protein genes have retained ubiquitous but distinct expression profiles across plant development. The expression of multiple G-protein genes was differentially regulated during seed-maturation and germination stages, and in response to various phytohormone treatments and stress conditions. Yeast-based interaction analysis showed that G-protein subunits interacted in most of the possible combinations, with some degree of subunit-specific interaction specificity, to control the functional selectivity of G-protein heterotrimer in different cell and tissue-types or in response to different environmental conditions. Taken together, this research identifies a highly diverse G-protein signaling network known to date from B. rapa, and provides a clue about the possible complexity of G-protein signaling networks present across globally important Brassica species.  相似文献   

17.
Background: The therapeutic effect of TNFα inhibition in rheumatoid arthritis (RA) is accompanied by an altered peripheral T cell cytokine profile, but the underlying mechanisms are not well known. In CD4+ T cells, TNF signalling includes the p38 MAP kinase (MAPK) pathway, which is also involved in proliferation and production of IL-4 and IFNγ. Methods: Phosphorylation of p38 MAPK was analysed flow cytometrically in peripheral blood mononuclear cells (PBMC) from healthy individuals and RA patients before and after adalimumab therapy. Cytokine production by CD3/CD28-stimulated PBMC was measured in the supernatant. Results: Despite a transient activation of p38 MAPK in response to cellular stress from the cell separation, a significant decrease of spontaneous p38 MAPK phosphorylation was observed after adalimumab, compared to RA patients with active disease. Brief stimulation with TNFα/IL-1β significantly activated p38 MAPK after but not before adalimumab therapy. In CD3/CD28-stimulated PBMC, significantly less p38 MAPK activation and increased IFNγ production were observed after adalimumab therapy. Conclusion: In rheumatoid arthritis, adalimumab therapy decreases the phosphorylation of p38 MAPK except for its response to TNF/IL-1, while enhancing the production of IFNγ. This suggests that p38 MAPK is not directly involved in the effect of TNF inhibition on cytokine production.  相似文献   

18.
In Dictyostelium discoideum, a unique Gβ subunit is required for a G protein–coupled receptor system that mediates a variety of cellular responses. Binding of cAMP to cAR1, the receptor linked to the G protein G2, triggers a cascade of responses, including activation of adenylyl cyclase, gene induction, actin polymerization, and chemotaxis. Null mutations of the cAR1, Gα2, and Gβ genes completely impair all these responses. To dissect specificity in Gβγ signaling to downstream effectors in living cells, we screened a randomly mutagenized library of Gβ genes and isolated Gβ alleles that lacked the capacity to activate some effectors but retained the ability to regulate others. These mutant Gβ subunits were able to link cAR1 to G2, to support gene expression, and to mediate cAMP-induced actin polymerization, and some were able to mediate to chemotaxis toward cAMP. None was able to activate adenylyl cyclase, and some did not support chemotaxis. Thus, we separated in vivo functions of Gβγ by making point mutations on Gβ. Using the structure of the heterotrimeric G protein displayed in the computer program CHAIN, we examined the positions and the molecular interactions of the amino acids substituted in each of the mutant Gβs and analyzed the possible effects of each replacement. We identified several residues that are crucial for activation of the adenylyl cyclase. These residues formed an area that overlaps but is not identical to regions where bovine Gtβγ interacts with its regulators, Gα and phosducin.  相似文献   

19.
Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm''s simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant (“Cyb”) with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors.  相似文献   

20.
G-protein signaling modulators (GPSM) play diverse functional roles through their interaction with G-protein subunits. AGS3 (GPSM1) contains four G-protein regulatory motifs (GPR) that directly bind Gαi free of Gβγ providing an unusual scaffold for the “G-switch” and signaling complexes, but the mechanism by which signals track into this scaffold are not well understood. We report the regulation of the AGS3·Gαi signaling module by a cell surface, seven-transmembrane receptor. AGS3 and Gαi1 tagged with Renilla luciferase or yellow fluorescent protein expressed in mammalian cells exhibited saturable, specific bioluminescence resonance energy transfer indicating complex formation in the cell. Activation of α2-adrenergic receptors or μ-opioid receptors reduced AGS3-RLuc·Gαi1-YFP energy transfer by over 30%. The agonist-mediated effects were inhibited by pertussis toxin and co-expression of RGS4, but were not altered by Gβγ sequestration with the carboxyl terminus of GRK2. Gαi-dependent and agonist-sensitive bioluminescence resonance energy transfer was also observed between AGS3 and cell-surface receptors typically coupled to Gαi and/or Gαo indicating that AGS3 is part of a larger signaling complex. Upon receptor activation, AGS3 reversibly dissociates from this complex at the cell cortex. Receptor coupling to both Gαβγ and GPR-Gαi offer additional flexibility for systems to respond and adapt to challenges and orchestrate complex behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号