首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have shown that GTP-binding proteins can modulate mitochondrial membrane fusion and fission. Furthermore, GTP-binding proteins can regulate the binding of ribosomes to the mitochondrial membrane and may facilitate the import of proteins through contact points between inner and outer mitochondrial membranes. Mitochondrial GTP-binding proteins therefore appear to have the potential to modulate physiological function of the organelle and may also be involved in cellular processes such as cellular transformation. A beginning has been made on the characterization of mitochondrial GTP-binding proteins and the DNA sequence of one protein has become newly available. Future studies are needed to determine whether GTP-binding proteins are interacting with cell signalling molecules such as protein kinases in the mitochondria.  相似文献   

2.
Amino acid sequences were obtained for four peptides (p1, -2, -3 and 4) generated by chemical or proteolytic cleavage of a 25 kDa GTP-binding protein purified from human placental and platelet membranes. The peptides shared sequence similarities with those contained in several of the ras-related GTP-binding proteins. Peptide p2, a 12-mer, was homologous with a region of the GTP-binding proteins that contains a structural motif proposed to contribute to the nucleotide binding site. However, whereas nearly all GTP-binding proteins exhibit the residues NKXD as this motif, p2 contains TQID. Antisera (Ap1 and Ap3) raised against synthetic peptides corresponding to p1 and p3 specifically reacted on Western blots with the 25 kDa GTP-binding protein purified from human placenta, human platelet and bovine brain as well as with a 25 kDa polypeptide in various cell lines. These results demonstrate the widespread existence of an abundant 25 kDa GTP-binding protein which contains a putative nucleotide binding domain that is chemically distinct from that described for all GTP-binding proteins of known primary structure.  相似文献   

3.
4.
A cDNA from human placenta and liver tissues that contained both sequence for the lysosomal glycosidase di-N-acetylchitobiase and sequence homologous to the gamma subunit of GTP-binding proteins was previously isolated. Here we have shown that the gamma-subunit-homologous portion of this unusual cDNA is derived from a member of the gamma-subunit multigene family. The partial human gamma-subunit sequence was used to isolate the corresponding full-length cDNA clones from bovine and rat livers. The two cDNAs encode identical 68-amino-acid proteins (7.3 kDa) homologous to previously cloned G protein gamma subunits. The bovine gene sequence encoding this new gamma-subunit isoform (gamma 5) was determined and found to have an intron-exon structure consistent with the original human chitobiase-gamma 5-subunit hybrid mRNA being a product of alternative splicing. Genomic cloning also resulted in the isolation of a human gamma 5 pseudogene.  相似文献   

5.
6.
Identification of the GTP-binding proteins from human platelet particulate fractions was attained by their purification via successive column chromatography steps followed by amino acid sequencing. To enhance the likelihood of identifying the GTP-binding proteins, two assays were employed to monitor GTP-binding activities: (i) guanosine 5'-(3-O-[35S]thio)triphosphate (GTP gamma S)-binding followed by rapid filtration and ii) [alpha-32P]GTP-binding following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroblotting onto nitrocellulose membranes. The latter assay permitted the isolation of a 28-kDa GTP-binding protein that bound [alpha-32P]GTP prominently but was only poorly detected with the GTP gamma S-binding assay. The amino acid sequences of three peptide fragments derived from the 28-kDa protein were identical to regions of the amino acid sequence deduced from a simian ral cDNA with the exception of one conservative substitution (Asp147----Glu). A full length human ral cDNA was isolated from a placental cDNA library, and its deduced amino acid sequence, compared with simian ral, also contained the Asp----Glu substitution along with two other substitutions and an additional three NH2-terminal amino acids. In addition to the 28-kDa protein, two distinct 25-kDa GTP-binding proteins were purified from platelets. One of these proteins has been previously characterized as G25K, an abundant low molecular mass GTP-binding protein. Partial amino acid sequence obtained from the second unidentified 25-kDa protein indicates that it is the product of the rac1 gene; a member of a newly identified gene family which encode for low molecular mass GTP-binding proteins (Didsbury, J., Weber, R.F., Bokoch, G. M., Evans, T., and Snyderman, R. (1989) J. Biol. Chem. 264, 16378-16382). These results identify two new GTP-binding proteins in human platelets, ral, the major protein that binds [alpha-32P]GTP on nitrocellulose transfers, and rac1, a substrate for botulinum C3 ADP-ribosyltransferase.  相似文献   

7.
A cDNA encoding for a 68 kDa GTP-binding protein was isolated from Arabidopsis thaliana (aG68). This clone is a member of a gene family that codes for a class of large GTP-binding proteins. This includes the mammalian dynamin, yeast Vps1p and the vertebrate Mx proteins. The predicted amino acid sequence was found to have high sequence conservation in the N-terminal GTP-binding domain sharing 54% identity to yeast Vps1p, 56% amino acid identity to rat dynamin and 38% identity to the murine Mx1 protein. The northern analysis shows expression in root, leaf, stem and flower tissues, but in mature leaves at lower levels. Southern analysis indicates that it may be a member of a small gene family or the gene may contain an intron.  相似文献   

8.
The opening and closing of the CFTR Cl- channel are regulated by ATP hydrolysis at its two nucleotide binding domains (NBDs). However, the mechanism and functional significance of ATP hydrolysis are unknown. Sequence similarity between the NBDs of CFTR and GTP-binding proteins suggested the NBDs might have a structure and perhaps a function like that of GTP-binding proteins. Based on this similarity, we predicted that the terminal residue of the LSGGQ motif in the NBDs of CFTR corresponds to a highly conserved glutamine residue in GTP-binding proteins that directly catalyzes the GTPase reaction. Mutations of this residue in NBD1 or NBD2, which were predicted to increase or decrease the rate of hydrolysis, altered the duration of channel closed and open times in a specific manner without altering ion conduction properties or ADP-dependent inhibition. These results suggest that the NBDs of CFTR, and consequently other ABC transporters, may have a structure and a function analogous to those of GTP-binding proteins. We conclude that the rates of ATP hydrolysis at NBD1 and at NBD2 determine the duration of the two states of the channel, closed and open, much as the rate of GTP hydrolysis by GTP-binding proteins determines the duration of their active state.  相似文献   

9.
Calexcitin (CE) is a calcium-binding protein, closely related to sarcoplasmic calcium-binding proteins, that is involved in invertebrate learning and memory. Early reports indicated that both Hermissenda and squid CE also could bind GTP; however, the biochemical significance of GTP-binding and its relationship to calcium binding have remained unclear. Here, we report that the GTPase activity of CE is strongly regulated by calcium. CE possessed a P-loop-like structure near the C-terminal similar to the phosphate-binding regions in other GTP-binding proteins. Site-directed mutagenesis of this region showed that Gly182, Phe186 and Gly187 are required for maximum affinity, suggesting that the GTP-binding motif is G-N-x-x-[FM]-G. CE cloned from Drosophila CNS possessed a similar C-terminal sequence and also bound and hydrolyzed GTP. GTPase activity in Drosophila CE was also strongly regulated by Ca2+, exhibiting over 23-fold higher activity in the presence of 0.3 μM calcium. Analysis of the conserved protein motifs defines a new family of Ca2+-binding proteins representing the first example of proteins endowed with both EF-hand calcium binding domains and a C-terminal, P-loop-like GTP-binding motif. These results establish that, in the absence of calcium, both squid and Drosophila CE bind GTP at near-physiological concentrations and hydrolyze GTP at rates comparable to unactivated ras. Calcium functions to increase GTP-binding and GTPase activity in CE, similar to the effect of GTPase activating proteins in other low-MW GTP-binding proteins. CE may, therefore, act as a molecular interface between Ca2+ cytosolic oscillations and the G protein-coupled signal transduction.  相似文献   

10.
Ras proteins can be modified at their COOH-terminal cysteine in the motif Cys-Ali-Ali-Xaa by a farnesyl isoprenoid. This modification is essential for membrane association and biological activity of ras proteins. A similar COOH-terminal amino acid sequence, Cys-Xaa-Ali-Xaa, exists in the ras-related GTP-binding proteins rac 1 and rac 2. To determine whether these proteins were similarly modified, COS cells were transfected with rac 1 and rac 2 cDNA and expressed proteins were labeled with [3H]mevalonic acid. We report here that both rac 1 and rac 2 are post-translationally modified by addition of an isoprenoid group, the likely site of which is the COOH-terminal cysteine. Isoprenylation was found only in racs associated with particulate cell fractions, suggesting that this modification may be associated with membrane localization of the proteins. These data specifically identify mammalian low molecular mass GTP-binding proteins other than ras that undergo post-translational modification and further define the COOH-terminal consensus sequence, Cys-Ali-Ali-Xaa, as an isoprenylation signal. This sequence may identify a larger family of low molecular mass GTP-binding proteins which are isoprenylated.  相似文献   

11.
Leishmania braziliensis M2903 contains a highly amplified small chromosome. This work is aimed at resolving its structural organization and determining whether this unusual chromosome contains specific genes encoding proteins with important functions in disease pathology or drug resistance. Our results show that the M2903 250-kb small chromosome contains LD1 sequences and has an inverted repeat structure. The LD1 sequences and two cDNAs (cDNA2 and cDNA53) were mapped on a cosmid contig, and the two cDNAs and the corresponding genomic fragments from the small chromosome were sequenced. The gene encoding cDNA2 predicts a putative GTP-binding protein with homology to other GTP-binding proteins only in the G-1 domain region; however, four other conserved motifs can be recognized. Sequence similarity to cDNA53 is located in at least five chromosomes, and its small chromosome copy is a pseudogene. An open reading frame downstream of the cDNA53 pseudogene predicts another GTP-binding protein that belongs to a new G-protein family with an unusual conserved GTP-binding domain and a newly characterized conserved sequence motif. A portion of this GTP-binding protein gene was studied previously in L. aethiopica as a recombinant antigen that reacts with human antibodies.  相似文献   

12.
13.
To identify Saccharomyces cerevisiae mutants defective in assembly or function of ribosomes, a collection of cold-sensitive strains generated by treatment with ethyl methanesulfonate was screened by sucrose gradient analysis for altered ratios of free 40S to 60S ribosomal subunits or qualitative changes in polyribosome profiles. Mutations defining seven complementation groups deficient in ribosomal subunits, drs1 to drs7, were identified. We have previously shown that DRS1 encodes a putative ATP-dependent RNA helicase necessary for assembly of 60S ribosomal subunits (T. L. Ripmaster, G. P. Vaughn, and J. L. Woolford, Jr., Proc. Natl. Acad. Sci. USA 89:11131-11135, 1992). Strains bearing the drs2 mutation process the 20S precursor of the mature 18S rRNA slowly and are deficient in 40S ribosomal subunits. Cloning and sequencing of the DRS2 gene revealed that it encodes a protein similar to membrane-spanning Ca2+ ATPases. The predicted amino acid sequence encoded by DRS2 contains seven transmembrane domains, a phosphate-binding loop found in ATP- or GTP-binding proteins, and a seven-amino-acid sequence detected in all classes of P-type ATPases. The cold-sensitive phenotype of drs2 is suppressed by extra copies of the TEF3 gene, which encodes a yeast homolog of eukaryotic translation elongation factor EF-1 gamma. Identification of gene products affecting ribosome assembly and function among the DNAs complementing the drs mutations validates the feasibility of this approach.  相似文献   

14.
Identification and isoprenylation of plant GTP-binding proteins   总被引:3,自引:0,他引:3  
To identify isoprenylated plant GTP-binding proteins,Arabidopsis thaliana andNicotiana tabacum cDNA expression libraries were screened for cDNA-encoded proteins capable of binding [32P]GTPin vitro. ATGB2, anArabidopsis homologue of the GTP-binding protein Rab2, was found to bind GTPin vitro and to be a substrate for a geranylgeranyl:protein transferase (GGTase) present in plant extracts. The carboxyl terminus of this protein contains a-GCCG sequence, which has not previously been shown to be recognized by any prenyl:protein transferase (PTase), but which most closely resembles that isoprenylated by the type II GGTase (-XXCC,-XCXC, or-CCXX).In vitro geranylgeranylation of anArabidopsis Rab1 protein containing a carboxyl-terminal-CCGQ sequence contirmed the presence of a type II GGTase-like activity in plant extracts. Several other proteins were also identified byin vitro GTP binding, includingArabidopsis and tobacco homologues of Rab11, ARF (ADP-ribosylation factor) and Sar proteins, as well as a novel 22 kDaArabidopsis protein (ATG81). This 22 kDa protein had consensus GTP-binding motifs and bound GTP with high specificity, but its structure was not closely related to that of any known GTP-binding protein (it most resembled proteins within the ARF/Sar and G protein -subunit superfamilies).  相似文献   

15.
We describe the sequence and characterization of the Bacillus subtilis flhF gene. flhF encodes a basic polypeptide of 41 kDa that contains a putative GTP-binding motif. The sequence of FlhF reveals a structural relationship to two Escherichia coli proteins, Ffh and FtsY, as well as to other members of the SRP54 family, in a domain presumed to bind GTP. flhF is located in a large operon consisting of chemotaxis and flagellar genes. Cells deficient in flhF are nonmotile. Through the use of anti-flagellar antibodies we have established that flhF is a flagellar (fla) gene. Thus, flhF is a unique flagellar gene in that it encodes a GTP-binding protein with similarities to members of the SRP54 family of proteins. These data suggest that flagellar biosynthesis in B. subtilis requires GTP.  相似文献   

16.
HBR1 (hemoglobin response gene 1) is an essential gene in Candida albicans that positively regulates mating type locus MTLα gene expression and thereby regulates cell type-specific developmental genes. Hbr1p contains a phosphate-binding loop (P-loop), a highly conserved motif characteristic of ATP- and GTP-binding proteins. Recombinant Hbr1p was isolated in an oligomeric state that specifically bound ATP with K(d) ~2 μM. ATP but not ADP, AMP, GTP, or dATP specifically protected Hbr1p from proteolysis by trypsin. Site-directed mutagenesis of the highly conserved P-loop lysine (K22Q) and the less conserved glycine (G19S) decreased the binding affinity for soluble ATP and ATP immobilized through its γ-phosphate. ATP bound somewhat more avidly than ATPγS to wild type and mutant Hbr1p. Although Hbr1p exhibits sequence motifs characteristic of adenylate kinases, and adenylate kinase and ATPase activities have been reported for the apparent human ortholog of Hbr1p, assays for adenylate kinase activity, autophosphorylation, and ATPase activity proved negative. Overexpression of wild type but not the mutant forms of Hbr1p restored MTlα2 expression in an HBR1/hbr1 mutant, indicating that ATP binding to the P-loop is necessary for this function of Hbr1p.  相似文献   

17.
高文  谢从华 《西北植物学报》2013,33(12):2558-2566
Rab蛋白是小G蛋白超级家族中的成员之一。通过Rab蛋白氨基酸序列的系统进化分析表明,植物Rab家族又可分为8个亚家族,分别为RabA、RabB、RabC、RabD、RabE、RabF、RabG和RabH。Rab蛋白一般位于胞内特异膜系统的胞质面,它们是小泡运输的关键调节因子。Rab蛋白有非常保守的结构域,同时又具有功能多样性,它们在细胞分化、顶端优势、花粉管发育、根瘤形成以及生物和非生物胁迫反应中均起着非常重要的作用。该文对近年来国内外有关植物Rab蛋白的结构特点及其多样性功能的研究进展进行综述。  相似文献   

18.
Small GTP-binding proteins of the Ras superfamily function as molecular switches in fundamental events such as signal transduction, cytoskeleton dynamics and intracellular trafficking. Guanine-nucleotide-exchange factors (GEFs) positively regulate these GTP-binding proteins in response to a variety of signals. GEFs catalyze the dissociation of GDP from the inactive GTP-binding proteins. GTP can then bind and induce structural changes that allow interaction with effectors. Representative structures of four main classes of exchange factors have been described recently and, in two cases, structures of the GTP-binding protein-GEF complex have been solved. These structures, together with biochemical studies, have allowed a deeper understanding of the mechanisms of activation of Ras-like GTP-binding proteins and suggested how they might represent targets for therapeutic intervention.  相似文献   

19.
Small GTP-binding proteins play critical roles in signal transduction in mammalian and plant systems. In this study, sequence variation of a small GTP-binding protein identified in the subgenomic region was analyzed. The major quantitative trait locus (QTL) controlling submergence tolerance on the 6.5-cM region of chromosome 9 was previously mapped, sequenced, and annotated. One of the most interesting candidate genes located in this QTL was a 5.2-kb sequence, which included a coding sequence consisting of two exons and a promoter. The deduced amino acid sequence corresponded to a 24.8 kD protein consisting of 226 amino acids, with 98% identity to RGP1, a small GTP-binding protein involved in a signal pathway responding to hormones, such as cytokinin and ethylene. According to the amino acid sequence, a putative small G-protein was classified as a small Ras-related GTP-binding protein. DNA gel blot analysis showed that the putative gene encoding the Ras-related GTP-binding protein was present as a single copy in the rice genome. Comparison of genomic sequences from several rice cultivars tolerant to submergence identified single nucleotide polymorphisms located in the TATA box of the Ras promoter region. Linkage analysis showed that the putative gene for GTP-binding protein was tightly linked to the peak of the QTL previously mapped on the long arm of chromosome 9. The single strand conformation polymorphism of the putative GTP-binding protein gene can be used for allele discrimination and marker assisted selection for tolerance to flash flooding.  相似文献   

20.
An examination of the available amino acid sequences of GTP-binding proteins has revealed that each contains a polypeptide essentially homologous for all of them. These sequences for elongation factor-Tu (EF-Tu) and the human bladder protein p21 exhibit a singular degree of homology (50%). Chemical and structural evidence indicates that this sequence in EF-Tu constitutes part of the nucleotide-binding site. The homologous sequences may therefore contribute to the GTP-binding sites of the other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号