首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary A classical conditioning paradigm was used to test the ability of Sternopygus macrurus to detect EOD-like stimuli (sine waves) of different frequencies. The behavioral tuning curves were quite close in shape to tuning curves based on single-unit recordings of T units, although the sensitivity at all frequencies was much greater. The behavioral curves showed notches of greatly reduced sensitivity when the test frequency was equal to, or twice the EOD frequency. The EOD of each of the fish was eliminated by lesioning the medullary pacemaker nucleus, and the fish were retested. The resulting tuning curves were nearly the same in shape as those of the EOD-intact individuals, but the PMN-lesioned fish showed an overall reduction of sensitivity of 30 dB. The EOD appears to enhance sensitivity by placing the summed stimulus (test stimulus + fish's EOD) at an amplitude where T units are maximally sensitive to small temporal modulations in the fish's own EOD. Peripheral tuning appears to limit the ability of males to detect the EOD of females, since these are, on average, an octave higher in frequency than the male EOD, while the peak sensitivity of the male occurs 5–10 Hz above its own EOD frequency.Abbreviations EOD electric organ discharge - PMN pacemaker nucleus - BF best frequency - DF difference frequency  相似文献   

2.
1. Sternopygus macrurus were collected in Venezuela during the period of gonadal recrudescence in early or late dry season. Electric organ discharge (EOD) frequencies were recorded, blood samples were taken for analysis of steroid titers, and gonads were taken for determination of reproductive condition. 2. Mean EOD frequencies were significantly lower in males than in females in all samples. EOD frequency was inversely correlated with body length in males in late, but not early, dry season, and these parameters were never correlated in females. 3. Plasma levels of testosterone (T) and 11-ketotestosterone (11-KT), but not estradiol-17 beta (E2), were inversely correlated with EOD frequency in males. No 11-KT was observed in plasma of females, and plasma levels of T and E2 in females were comparable to those of males. Neither T nor E2 were correlated with EOD frequency in females. 4. Testes collected in late dry season were more mature than those from early dry season; androgen levels and EOD frequency were correlated with testicular maturity. Ovaries collected in early dry season were immature, while those from late dry season were more mature. There was no relationship between EOD frequency and stage of ovarian development. 5. These results suggest that plasma androgens modulate EOD frequency in males during the reproductive season and that plasma E2 has little relationship to EOD frequency in either sex.  相似文献   

3.
I recorded the electric organ discharges (EODs) of 331 immature Brachyhypopomus pinnicaudatus 6–88 mm long. Larvae produced head-positive pulses 1.3 ms long at 7 mm (6 days) and added a second, small head-negative phase at 12 mm. Both phases shortened duration and increased amplitude during growth. Relative to the whole EOD, the negative phase increased duration until 22 mm and amplitude until 37 mm. Fish above 37 mm produced a “symmetric” EOD like that of adult females. I stained cleared fish with Sudan black, or fluorescently labeled serial sections with anti-desmin (electric organ) or anti-myosin (muscle). From day 6 onward, a single electric organ was found at the ventral margin of the hypaxial muscle. Electrocytes were initially cylindrical, overlapping, and stalk-less, but later shortened along the rostrocaudal axis, separated into rows, and formed caudal stalks. This differentiation started in the posterior electric organ in 12-mm fish and was complete in the anterior region of fish with “symmetric” EODs. The lack of a distinct “larval” electric organ in this pulse-type species weakens the hypothesis that all gymnotiforms develop both a temporary (larval) and a permanent (adult) electric organ. Accepted: 1 March 1997  相似文献   

4.
Different species have developed different solutions to the problem of constructing a representation of the environment from sensory images projected onto sensory surfaces. Comprehension of how these images are formed is an essential first step in understanding the representation of external reality by a given sensory system. Modeling of the electrical sensory images of objects began with the discovery of electroreception and continues to provide general insights into the mechanisms of imaging. Progress in electric image research has made it possible to establish the physical basis of electric imaging, as well as methods to accurately predict the electric images of objects alone and as a part of a natural electric scene. In this review, we show the following. (1) The internal low resistance of the fish’s body shapes the image in two different ways: by funneling the current generated by the electric organ to the sensory surface, it increases the fields rostrally, thus enhancing the perturbation produced by nearby objects; and by increasing the projected image. (2) The electric fish’s self-generated currents are modified by capacitive objects in a distinctive manner. These modulations can be detected by different receptor types, yielding the possibility of “electric color.” (3) The effects of different objects in a scene interact with each other, generating an image that is different from the simple addition of the images of individual objects, thus causing strong contextual effects.  相似文献   

5.
The weakly electric fish, Apteronotus leptorhynchus, produces a wave-like electric organ discharge (EOD) utilized for electrolocation and communication. Both sexes communicate by emitting chirps: transient increases in EOD frequency. In males, chirping behavior and the jamming avoidance response (JAR) can be evoked by an artificial EOD stimulus delivered to the water at frequencies 1–10 Hz below the animal's own EOD. In contrast, females rarely chirp in response to this stimulus even though they show consistent JARs. To investigate whether this behavioral difference is hormone dependent, we implanted females with testosterone (T) and monitored their chirping activity over a 5 week period. Our findings indicate that elevations in blood levels of T cause an enhancement of chirping behavior and a lowering of basal EOD frequency in females. Elevated blood levels of T also appear to modulate the quality of chirps produced by hormone treated females. The effects of T on female chirping behavior and basal EOD frequency appear specific, since the magnitude of the JAR was not affected by the hormonal treatment. These findings suggest that seasonal changes in circulating concentrations of T may regulate behavioral changes in female chirping behavior and basal EOD frequency.Abbreviations DHT dihydrotestosterone - E estradiol - EOD elecdric organ discharge - GSI gonadal size index - JAR jamming avoidance response - PPn prepacemaker nucleus - T testosterone  相似文献   

6.
Oxygen consumption in weakly electric Neotropical fishes   总被引:2,自引:0,他引:2  
Weakly electric gymnotiform fishes with wave-type electric organ discharge (EOD) are less hypoxia-tolerant and are less likely to be found in hypoxic habitats than weakly electric gymnotiforms with pulse-type EOD, suggesting that differences in metabolism resulting from EOD type affects habitat choice. Although gymnotiform fishes are common in most Neotropical freshwaters and represent the dominant vertebrates in some habitats, the metabolic rates of these unique fishes have never been determined. In this study, O2 consumption rates during EOD generation are reported for 34 gymnotiforms representing 23 species, all five families and 17 (59%) of the 28 genera. Over the size range sampled (0.4 g to 125 g), O2 consumption of gymnotiform fishes was dependent on body mass, as expected, fitting a power function with a scaling exponent of 0.74, but the O2 consumption rate was generally about 50% of that expected by extrapolation of temperate teleost metabolic rates to a similar ambient temperature (26°C). O2 consumption rate was not dependent on EOD type, but maintenance of scan swimming (continuous forwards and backwards swimming), which is characteristic only of gymnotiforms with wave-type EODs, increased O2 consumption 2.83±0.49-fold (mean±SD). This suggests that the increased metabolic cost of scan swimming could restrict gymnotiforms with wave-type EODs from hypoxic habitats.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

7.
Stimulation of the spinal cord of the electric fish Gymnotus carapo, evoked an abrupt increase in the discharge rate of the electric organ. At the maximum of this response, the rate increased an average of 26 ± 11.8%. The duration of the response was 4.9 ± 2.12 s; its latency was 10.4 ± 1.1 ms. Activation of the Mauthner axon played a decisive role in this phenomenon as indicated by the following: (1) recordings from the axon cap of the Mauthner cell demonstrated that the response was evoked if the Mauthner axon was antidromically activated and (2) a response that was similar to that produced by spinal cord stimulation, was elicited by intracellular stimulation of either Mauthner cell. Stimulation of the eighth nerve could also increase the discharge rate of the electric organ. The effect was greater if a Mauthner cell action potential was elicited. The findings described in the present report, indicate the existence of a functional connection between the Mauthner cell and the electromotor system in Gymnotus carapo. This connection may function to enhance the electrolocative sampling of the environment during Mauthner-cell mediated behaviors. This is a novel function for the Mauthner cell.Abbreviations EHP extrinsic hyperpolarizing potential - EOD electric organ discharge - M-AIR Mauthner initiated abrupt increase in rate - M-cell Mauthner cell - M-axon Mauthner axon - PM pacemaker nucleus - PM-cell pacemaker cell - PPn prepacemaker nucleus - SPPn sublemniscal prepacemaker nucleus  相似文献   

8.
The present study was designed to examine the synaptic events in neurons of the pacemaker nucleus of Gymnotus carapo during the increase in rate of the electric organ discharge following activation of Mauthner cells. Pacemaker and relay cells were investigated using intracellular recordings which were performed under two different conditions: (1) with the pacemaker nucleus spontaneously discharging and (2) after its activity was abolished by anesthesia. Mauthner axon activation induced an increase in the rate of pacemaker cell discharges. This response was accompanied by an increase in the slope of the pacemaker potential (up to 110%) and a depolarization of these cells. The discharges of relay cells followed one to one those of pacemaker cells. In contrast to that observed in pacemaker cells, only brief depolarizing antidromic effects could be evoked in relay cells after Mauthner axon activation. In quiescent pacemaker cells, Mauthner cell activation induced a prolonged (up to 500 ms) depolarizing potential with an average amplitude of 1.92 ± 0.82 mV; its latency was 4.43 ± 1.14 ms. Our data indicate that, within the pacemaker nucleus, the population of pacemaker cells is the only target for Mauthner cell-evoked, short-latency excitatory synaptic actions. Accepted: 1 March 1997  相似文献   

9.
In wave-type weakly electric fish, two distinct types of primary afferent fibers are specialized for separately encoding modulations in the amplitude and phase (timing) of electrosensory stimuli. Time-coding afferents phase lock to periodic stimuli and respond to changes in stimulus phase with shifts in spike timing. Amplitude-coding afferents fire sporadically to periodic stimuli. Their probability of firing in a given cycle, and therefore their firing rate, is proportional to stimulus amplitude. However, the spike times of time-coding afferents are also affected by changes in amplitude; similarly, the firing rates of amplitude-coding afferents are also affected by changes in phase. Because identical changes in the activity of an individual primary afferent can be caused by modulations in either the amplitude or phase of stimuli, there is ambiguity regarding the information content of primary afferent responses that can result in ‘phantom’ modulations not present in an actual stimulus. Central electrosensory neurons in the hindbrain and midbrain respond to these phantom modulations. Phantom modulations can also elicit behavioral responses, indicating that ambiguity in the encoding of amplitude and timing information ultimately distorts electrosensory perception. A lack of independence in the encoding of multiple stimulus attributes can therefore result in perceptual illusions. Similar effects may occur in other sensory systems as well. In particular, the vertebrate auditory system is thought to be phylogenetically related to the electrosensory system and it encodes information about amplitude and timing in similar ways. It has been well established that pitch perception and loudness perception are both affected by the frequency and intensity of sounds, raising the intriguing possibility that auditory perception may also be affected by ambiguity in the encoding of sound amplitude and timing.  相似文献   

10.
In several species of electric fish with a sex difference in their pulse-type electric organ discharge (EOD), the action potential-generating cells of the electric organ (electrocytes) of males are larger and more invaginated compared to females. Androgen treatment of females and juveniles produces a longer-duration EOD pulse that mimics the mature male EOD, with a concurrent increase in electrocyte size and/or membrane infolding. In Sternopygus macrurus, which generates a wave-type EOD, androgen also increases EOD pulse duration. To investigate possible morphological correlates of hormone-dependent changes in EOD in Sternopygus, we examined electric organs from both fish collected in the field, and untreated and androgen-treated specimens in the laboratory. The electrocytes are cigar shaped, with prominent papillae on the posterior, innervated end. Electrocytes of field-caught specimens were significantly larger in all parameters than were electrocytes of specimens maintained in the laboratory. EOD pulse duration and frequency were highly correlated, and were significantly different between the sexes in sexually mature fish. Nevertheless, no sex difference in electrocyte morphology was observed, nor did any parameters of electrocyte morphology correlate with EOD pulse duration or frequency. Further, whereas androgen treatment significantly lowered EOD frequency and broadened EOD pulse duration, there was no difference in electrocyte morphology between hormone-treated and control groups. Thus, in contrast to results from studies on both mormyrid and gymnotiform pulse fish, electrocyte morphology is not correlated with EOD waveform characteristics in the gymnotiform wave-type fish Sternopygus. The data, therefore, suggest that sex differences in EOD are dependent on changes in active electrical properties of electrocyte membranes.  相似文献   

11.
12.
Summary The electric organ discharge (EOD) potential was mapped on the skin and midplane of several Apteronotus leptorhynchus. The frequency components of the EOD on the surface of the fish have extremely stable amplitude and phase. However, the waveform varies considerably with different positions on the body surface. Peaks and zero crossings of the potential propagate along the fish's body, and there is no point where the potential is always zero. The EOD differs significantly from a sinusoid over at least one third of the body and tail. A qualitative comparison between fish showed that each individual had a unique spatiotemporal pattern of the EOD potential on its body.The potential waveforms have been assembled into high temporal and spatial resolution maps which show the dynamics of the EOD. Animation sequences and Macintosh software are available by anonymous ftp (mordor.cns.caltech.edu; cd/pub/ElectricFish).We interpret the EOD maps in terms of ramifications on electric organ control and electroreception. The electrocytes comprising the electric organ do not all fire in unison, indicating that the command pathway is not synchronized overall. The maps suggest that electroreceptors in different regions fulfill different computational roles in electroreception. Receptor mechanisms may exist to make use of the phase information or harmonic content of the EOD, so that both spatial and temporal patterns could contribute information useful for electrolocation and communication.Abbreviations EOD electric organ discharge - EO electric organ - CV coefficient of variance  相似文献   

13.
The electric organ discharge (EOD) of the South American knifefish Eigenmannia sp. is a permanently present wave signal of usually constant amplitude and frequency (similar to a sine wave). A fish perceives discharges of other fish as a modulation of its own. At frequency identity (F = 0 Hz) the phase difference between a fish's own electric discharge and that of another fish affects the superimposed waveform. It was unclear whether or not the electrosensory stimulus-intensity threshold as behaviourally determined depends on the phase difference between a fish's own EOD and a sine-wave stimulus (at F = 0 Hz). Also the strength of the jamming avoidance response (JAR), a discharge frequency shift away from a stimulus that is sufficiently close to the EOD frequency, as a function of phase difference was studied. Sine-wave stimuli were both frequency-clamped and phase-locked to a fish's discharge frequency (F = 0 Hz). In food-rewarded fish, the electrosensory stimulus-intensity threshold depended significantly on the phase difference between a fish's discharge and the stimulus. Stimulus-intensity thresholds were low (down to 3 V/cm, peak-to-peak) when the superimposed complex wave changed such that the shift in zero-crossings times relative to the original EOD was large but amplitude change minimal; stimulus-intensity thresholds were high (up to 16.9 V/cm, peak-to-peak) when the shift in zero-crossings times was small but amplitude change maximal. Similar results were obtained for the non-conditioned JAR: at constant supra-threshold stimulus intensities and F = 0 Hz, the phase difference significantly affected the strength of the JAR, although variability between individuals was higher than that observed in the conditioned experiments.Abbreviations ACP active phase coupling - EOD electric organ discharge - JAR jamming avoidance response - F frequency (fish) — frequency (stimulus) [Hz] - p-p peak-to-peak  相似文献   

14.
15.
Sexually-selected communication signals can be used by competing males to settle contests without incurring the costs of fighting. Steroid regulation of these signals can render them as reliable indicators of a male's physiological state. We investigated how plasticity in electrocommunication signals is driven by social competition for mates, mediated by steroid hormones, and subject to the effects of past social experience. We measured the electric waveform's amplitude and duration and steroid hormone levels of male gymnotiform electric fish (Brachyhypopomus gauderio) following week-long periods of social isolation, and low or high social competition. To quantify the effect of social history on the modulation of the electric signal, six groups of six males experienced all three social conditions but in different order. We found that males differentially modulate their electric signals depending on the order they experienced these conditions. Thus, past social interactions affect both present and future social electric signals. Cortisol levels and the amplitude of the electric signal appeared to track the intensity of competition, while androgen levels and the duration of the electric signal only responded to the presence (low and high competition) or absence (isolation) of a social environment (low and high androgens respectively). In addition, cortisol levels were related to the body size of the males at high social competition. Taken together, these findings suggest that the capacity of males to modulate their signals in response to social competition is regulated by steroids.  相似文献   

16.
Mormryid electric fish (Gnathonemus petersii) respond to novel stimuli with an increase in the rate of the electric organ discharge (EOD). These novelty responses were used to measure the fish's ability to detect small changes in the amplitude and latency of an electrosensory stimulus. Responses were evoked in curarized fish in which the EOD was blocked but in which the EOD motor command continued to be emitted. An artificial EOD was provided to the fish at latencies of 2.4 to 14.4 ms following the EOD motor command.Novelty responses were evoked in response to transient changes in artificial EOD amplitude as small as 1% of baseline amplitude, and in latency as small as 0.1 ms. Changes in latency were effective only at baseline delays of less than 12.4 ms.The sensitivity to small changes in latency supports the hypothesis that latency is used as a code for stimulus intensity in the active electrolocation system of mormyrid fish. The results also indicate that a corollary discharge signal associated with the EOD motor command is used to measure latency.Abbreviations EOD electric organ discharge - ELL electrosensory lateral line lobe - epsp excitatory post synaptic potential  相似文献   

17.
The African electric fish Gymnarchus niloticus rhythmically emits electric organ discharges (EODs) for communication and navigation. The EODs are generated by the electric organ in the tail in response to the command signals from the medullary pacemaker complex, which consists of a pacemaker nucleus (PN), two lateral relay nuclei (LRN) and a medial relay nucleus (MRN). The premotor structure and its modulatory influences on the pacemaker complex have been investigated in this paper. A bilateral prepacemaker nucleus (PPn) was found in the area of the dorsal posterior nucleus (DP) of the thalamus by retrograde labeling from the PN. No retrogradely labeled neurons outside the pacemaker complex were found after tracer injection into the LRN or MRN. Accordingly, anterogradely labeled terminal fibers from PPn neurons were found only in the PN. Iontophoresis of l-glutamate into the region of the PPn induced EOD interruptions. Despite the exclusive projection of the PPn neurons to the PN, extracellular and intracellular recordings showed that PN neurons continue their firing while MRN neurons ceased their firing during EOD interruption. This mode of EOD interruption differs from those found in any other weakly electric fishes in which EOD cessation mechanisms have been known.  相似文献   

18.
Understanding how electrosensory images are generated and perceived in actively electrolocating fish requires the study of the characteristics of fish bodies as electric sources. This paper presents a model ofGymnotus carapo based on measurements of the electromotive force generated by the electric organ and the impedance of the passive tissues. A good agreement between simulated and experimentally recorded transcutaneous currents was obtained. Passive structures participate in the transformation of the electromotive force pattern into transcutaneous current profiles. These spatial filtering properties of the fish's body were investigated using the model. The shape of the transcutaneous current profiles depends on tissue resistance and on the geometry and size of the fish. Skin impedance was mainly resistive. The effect of skin resistance on the spatial filtering properties of the fish's body was theoretically analyzed.The model results show that generators in the abdominal and central regions produce most of the currents through the head. This suggests that the electric organ discharge (EOD), generated in the abdominal and central regions is critical for active electrolocation. In addition, the well-synchronized EOD components generated all along the fish produce large potentials in the far field. These components are probably involved in long-distance electrocommunication.Preliminary results of this work were published as a symposium abstract.  相似文献   

19.
Summary Nearly sinusoidal electric organ discharges (EODs) of the weakly electric fish Sternopygus, occur at a regular rate within a range from 50 to 200 Hz and are commanded by a medullary pacemaker nucleus (Pn). During courtship and aggression, the rate of EODs is modulated as smooth EOD-frequency rises or brief EOD-interruptions (Hopkins 1974b). The present study examines the control of such modulations. Rises were elicited by L-glutamate stimulation of the diencephalic prepacemaker nucleus, the only previously known source of input to the Pn. We demonstrate an additional input to the Pn, the sublemniscal prepacemaker nucleus (SPPn). L-glutamate stimulation of this area caused EOD-interruptions.The Pn contains electrotonically coupled pacemaker cells which generate the rhythm of the EODs, as well as relay cells which transmit the command pulse to the spinal motor neurons that innervate the electric organ. Pacemaker cells recorded intracellularly during EOD-interruptions continued firing at their regular frequency but with slightly increased jitter. Relay cells, on the other hand, were strongly depolarized and fired spikelets at a greatly increased frequency during EOD-interruptions. Thus EOD-interruptions were caused by SPPn input to relay cells that caused their massive depolarization, blocking the normal input from pacemaker cells without greatly affecting pacemaker cell firing characteristics.Application to the Pn of an antagonist to NMDA-type glutamate receptors blocked EOD-frequency rises and EOD-interruptions. Antagonists to quisqualate/ kainate receptor-types were ineffective.Abbreviations EOD Electric Organ Discharge - JAR Jamming Avoidance Response - Pn pacemaker nucleus - PPn diencephalic prepacemaker nucleus - SPPn sublemniscal prepacemaker nucleus  相似文献   

20.
The hypothalamic-pituitary-adrenal/interrenal axis couples serotonergic activity in the brain to the peripheral regulators of energy balance and response to stress. The regulation of peripheral systems occurs largely through the release of peptide hormones, especially the melanocortins (adrenocorticotropic hormone [ACTH] and alpha melanocyte stimulating hormone [α-MSH]), and beta-endorphin. Once in circulation, these peptides regulate a wide range of processes; α-MSH in particular regulates behaviors and physiologies with sexual and social functions. We investigated the role of the HPI and melanocortin peptides in regulation of electric social signals in the gymnotiform electric fish, Brachyhypopomus pinnicaudatus. We found that corticotropin releasing factor, thyrotropin-releasing hormone, and α-MSH, three peptide hormones of the HPI/HPA, increased electric signal waveform amplitude and duration when injected into free-swimming fish. A fourth peptide, a synthetic cyclic-α-MSH analog attenuated the normal circadian and socially-induced EOD enhancements in vivo. When applied to the electrogenic cells (electrocytes) in vitro, only α-MSH increased the amplitude and duration of the electrocyte discharge similar to the waveform enhancements seen in vivo. The cyclic-α-MSH analog had no effect on its own, but blocked or attenuated α-MSH-induced enhancements in the single-cell discharge parameters, demonstrating that this compound functions as a silent antagonist at the electrocyte. Overall, these results strongly suggest that the HPI regulates the EOD communication signal, and demonstrate that circulating melanocortin peptides enhance the electrocyte discharge waveform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号