首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Data on orangutans (Pongo pygmaeus abelii) living in a Sumatran swamp forest yield an estimated median interbirth interval of at least 8 years, concurring with findings from other sites. This longest known mammalian interbirth interval appears due to maternal amenorrhea during the long exclusive dependence of the offspring. We describe the development of various components of offspring independence. In this arboreal ape, 3‐year‐olds had largely reached locomotor independence. Nest‐building skills were also well‐developed in 3‐year‐olds, but immatures shared their mother's nest until weaned at around age 7. At time of birth of the new sibling, association with the mother had begun to decline for both male and female offspring, suggesting that the immatures had mastered all the necessary skills, including basic tool use, to feed themselves. By about 11 years of age, they also ranged independently from the mother. These results show that orangutans do not develop independence more slowly than chimpanzees. Why, then, is weaning 2 years later in orangutans? In chimpanzees, mothers are often accompanied by two or even three consecutive offspring, unlike in orangutans. This contrast suggests that an orangutan mother cannot give birth until the previous offspring is ecologically competent enough to begin to range independently of her, probably due to the high energy costs of association. Thus, the exceptionally long interbirth intervals of orangutans may be a consequence of their solitary lifestyle. Am J Phys Anthropol, 2004. © 2004 Wiley‐Liss, Inc.  相似文献   

2.
Knuckle-walking is a pattern of digitigrade locomotion unique to African apes among Primates. Only chimpanzees and gorillas are specially adapted for supporting weight on the dorsal aspects of middle phalanges of flexed hand digits II–V. When forced to the ground, most orangutans assume one of a variety of flexed hand postures, but they cannot knuckle-walk. Some orangutans place their hands in palmigrade postures which are impossible to African apes. The knuckle-walking hands and plantigrade feet of African apes are both morphologically and adaptively distinct from those of Pongo, their nearest relative among extant apes. These features are associated with a common adaptive shift to terrestrial locomotion and support placing chimpanzees and gorillas in the same genus Pan. It is further suggested than Pan comprises the subgenera (a) Pan, including P. troglodytes and pygmy chimpanzees, and (b) Gorilla, including mountain and lowland populations of P. gorilla. African apes probably diverged from ancestral pongids that were specially adapted for distributing their weight in terminal branches of the forest canopy. Early adjustments to terrestrial locomotion may have involved fist-walking which later evolved into knuckle-walking. Orangutans continued to adapt to feeding and locomotion in the forest canopy and their hands and feet became highly specialized for four-digit prehension. Although chimpanzees retained arboreal feeding and nesting habits, they moved from tree to tree by terrestrial routes and became less restricted in habitat. While adapting to a diet of ground plants gorillas increased in size to the point that arboreal nesting is less frequent among them than among chimpanzees and orangutans. Early hominids probably diverged from pongids that had not developed prospective adaptations to knuckle-walking, and therefore did not evolve through a knuckle-walking stage. Initial adjustments to terrestrial quadrupedal locomotion and resting stance probably included palmigrade hand posturing. Their thumbs may have been already well developed as an adaptation for grasping during arboreal climbing. A combination of selection pressures for efficient terrestrial locomotor support and for object manipulation further advanced early hominid hands toward modern human configuration.  相似文献   

3.
We examined the effects of the presence of bird's nest ferns on the species diversity of oribatid mites in the whole forest in terms of the three categories of species diversity (α-, β-, and γ-diversity) in a subtropical forest in south-western Japan. The species diversity (1 − D) of oribatid communities in the ferns was significantly lower than those in bark of trees and the forest-floor litter and soil, and was similar to that in the branches. The oribatid faunas in the litter in and the roots of the fern were more similar to those in both the forest-floor litter and soil than to the faunas in the other arboreal habitats. However, the ferns can be colonized by endemic oribatid species specialized to such environments. The number of oribatid species estimated for a hypothetical stand with no ferns was about 180 species from 80 samples; this value did not differ significantly from that in another hypothetical stand with ferns (ca. 190 species). Thus, the species richness of oribatid communities estimated for the whole forest (the γ-diversity) was not affected by the presence or absence of bird's nest ferns. The α- and β-diversities of oribatid communities on bird's nest ferns were lower than those in other habitats, and they might not dramatically raise the overall γ-diversity of invertebrate communities in the whole forest. The bird's nest ferns, however, can generate a unique habitat for specialized species, and this would help to maintain species diversities of invertebrates at the whole-forest scale in subtropical forests.  相似文献   

4.
We recorded nesting data at 569 fresh night nest sites, comprising 7032 individual nests, of Cross River gorillas inhabiting the Kagwene Mountain in western Cameroon. The mean night nest group size was 12.4. Overall, 55% of night nests were constructed on the ground and 45% in trees. Significantly more arboreal nests were constructed in the wet season (69%), vs. the dry season (19%). Day nest construction was common at Kagwene (n = 260 nest sites, mean nest group size = 5.98) and we encountered significantly more day nest sites in the wet season. Nest site reuse was also common (35%), though not related to season. Our results of nesting habits concur with those from other western gorilla studies, in which rainfall influences arboreal nesting. However, we encountered wet season arboreal nesting, day nest construction, and overall nest site reuse more frequently than reported for other sites. Our observations have considerable implications when estimating group size and density using traditional nest count data. The gorillas at Kagwene inhabit the highest altitudinal range of all Cross River gorilla subpopulations and rainfall is also high; therefore other subpopulations may demonstrate different nesting characteristics. However, one should consider our findings when attempting to estimate Cross River gorilla density at other localities through nest site data.  相似文献   

5.
Within the forest canopy, the shortest gaps between tree crowns lie between slender terminal branches. While the compliance of these supports has previously been shown to increase the energetic cost of gap crossing in arboreal animals (e.g. Alexander 1991 Z. Morphol. Anthropol. 78, 315-320; Demes et al. 1995 Am. J. Phys. Anthropol. 96, 419-429), field observations suggest that some primates may be able to use support compliance to increase the energetic efficiency of locomotion. Here, we calculate the energetic cost of alternative methods of gap crossing in orangutans (Pongo abelii). Tree sway (in which orangutans oscillate a compliant tree trunk with increasing magnitude to bridge a gap) was found to be less than half as costly as jumping, and an order of magnitude less costly than descending the tree, walking to the vine and climbing it. Observations of wild orangutans suggest that they actually use support compliance in many aspects of their locomotor behaviour. This study seems to be the first to show that elastic compliance in arboreal supports can be used to reduce the energetic cost of gap crossing.  相似文献   

6.
Orangutans share many intellectual qualities with African great apes and humans, likely because of their recent common ancestry. They may also show unique intellectual adaptations because of their long evolutionary divergence from the African lineage. This paper assesses orangutan intelligence in light of this evolutionary history. Evidence derives from observations of juvenile ex-captive orangutans reintroduced to free forest life by the Wanariset Orangutan Reintroduction Project, East Kalimantan, Indonesia. The intellectual qualities shared by great apes and humans point to a distinct “great ape” intelligence with hierarchization as a pivotal cognitive mechanism. Evolutionary reconstructions jibe with this view and suggest that technically difficult foods may have been key selection pressures. Orangutans should then show hierarchical intelligence when obtaining difficult foods. Evidence on ex-captive orangutans' techniques for processing difficult foods concurs. Intellectual qualities distinct to orangutans may owe to arboreal travel pressures; in particular arboreality may aggravate foraging problems. Evidence confirms that ex-captive orangutans' techniques for accessing difficult foods located arboreally are intellectually complex—i.e. they show hierarchization. These findings suggest other factors probably important to understanding great ape and orangutan forms of intelligence and their evolutionary origins.  相似文献   

7.
This study examined the locomotor behavior of wild Bornean orangutans (P. p. wurmbii) in an area of disturbed peat swamp forest (Sabangau Catchment, Indonesia) in relation to the height in the canopy, age-sex class, behavior (feeding or traveling), and the number of supports used to bear body mass. Backward elimination log-linear modeling was employed to expose the main influences on orangutan locomotion. Our results showed that the most important distinctions with regard to locomotion were between suspensory and compressive, or, orthograde (vertical trunk) and pronograde (horizontal trunk) behavior. Whether orangutans were traveling or feeding had the most important influence on locomotion whereby compressive locomotion had a strong association with feeding, suspensory locomotion had a strong association with travel in the peripheral strata using multiple supports, whereas vertical climb/descent and oscillation showed a strong association with travel on single supports in the core stratum. In contrast to theoretical predictions on positional behavior and body size, age-sex category had a limited influence on locomotion. The study revealed that torso orthograde suspension dominates orangutan locomotion, concurring with previous studies in dipterocarp forest. But, orangutans in the Sabangau exhibited substantially higher frequencies of oscillatory locomotion than observed at other sites, suggesting this behavior confers particular benefits for traversing the highly compliant arboreal environment typical of disturbed peat swamp forest. In addition, torso pronograde suspensory locomotion was observed at much lower levels than in the Sumatran species. Together these results highlight the necessity for further examination of differences between species, which control for habitat.  相似文献   

8.
The influence of habitat structure and support availability on support use is an important aspect of understanding locomotor behavior in arboreal primates. We compared habitat structure and support availability in three orangutan study sites—two on Sumatra (Pongo abelii) in the dry‐lowland forest of Ketambe and peat swamp forest of Suaq Balimbing, and one on Borneo (Pongo pygmaeus wurmbii) in the disturbed peat swamp forest of Sabangau—to better understand orangutan habitat use. Our analysis revealed vast differences in tree and liana density between the three sites. Sabangau had a much higher overall tree density, although both Sumatran sites had a higher density of larger trees. The two peat swamp forests were more similar to each other than to Ketambe, particularly with regard to support availability. Ketambe had a wider variety of supports of different sizes and types, and a higher density of larger lianas than the two peat swamps. Orangutans in all three sites did not differ substantially in terms of their preferred supports, although Sumatran orangutans had a strong tendency to use lianas, not observed in Sabangau. Differences in observed frequencies of locomotor behavior suggest the homogeneous structure of Sabangau limits the locomotor repertoire of orangutans, with high frequencies of fewer behaviors, whereas the wider range of supports in Ketambe appears to have facilitated a more varied locomotor repertoire. There were no differences among age‐sex classes in the use of arboreal pathways in Suaq Balimbing, where orangutans selected larger trees than were typically available. This was less apparent in Sabangau, where orangutans generally used trees in relation to their environmental abundance, reflecting the homogeneous nature of disturbed peat swamp forest. These results demonstrate that forest architecture has an important influence on orangutan locomotion, which may become increasingly important as the structure of orangutan habitat continues to be altered through human disturbance. Am. J. Primatol. 74:1128‐1142, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Previously, wild orangutan feeding and ranging behaviors have been described only from populations in hilly or mountainous regions. The Tanjung Puting study focuses on an orangutan population in a swampy lowland area near sea level. Tanjung Puting also differs from other areas in the virtual absence of large figs, which are significant orangutan food sources elsewhere. During a 4-year period and 6804 hr of observation, focal orangutans were recorded in 11,338 foraging bouts accounting for 3805 hr. Composition and phenology of the forest habitat were documented. The orangutans were predominantly frugivorous, with fruit-eating accounting for 61% of the foraging time. However, the overall variety in their diet was remarkable; 317 different food types have been identified, including fungus, insects, and honey. Orang-utans were strongly opportunistic foragers, with the composition of their diet varying markedly from month to month. During most months orangutans fed on a complex mix of fruit, leaves, bark, insects, and small vines. During some months fruit was not the major component of the diet. All orangutans foraged in both the dry-ground mixed dipterocarp forest and the peatswamp forest habitats found in their ranges. Adult males and females utilized different proportions of certain resources in their diets. Prime adult males also ranged further per day and spent more time on the ground than prime adult females. At Tanjung Puting contact with other orangutans usually increased a focal orangutan’s day length, day range, and amount of time spent moving. This suggests that foraging alone maximized each orangutan’s foraging returns by minimizing the day range traveled. Orangutan solitariness is the result of a large body size and of a predominantly frugivorous and opportunistic diet.  相似文献   

10.
Many animals interrupt their moving with brief pauses, which appear to serve several different functions. We examined the function of such intermittent locomotion in wild living mustached tamarins (Saguinus mystax), small arboreal New World primates that form mixed-species groups with saddleback tamarins (Saguinus fuscicollis). We investigated how different environmental and social factors affect pausing during locomotion and used these data to infer the function of this behavior. As measures of intermittent locomotion, we used percentage of time spent pausing and pause rate. We considered 3 possible functions that are not mutually exclusive: increased endurance, route planning, and antipredator vigilance. Mustached tamarins spent on average (mean ± SE) 55.1 ± 1.0% of time pausing, which makes effective resource exploitation more time consuming and needs to be outweighed by correspondingly large benefits. Percentage of time spent pausing decreased in larger mixed-species groups vs. smaller mixed-species groups and decreased with height and in monkeys carrying infants. It was not affected by sex, age, spatial arrangement, or single-species group size. Pause rate increased in individuals traveling independently compared to those traveling in file, but was not affected by other factors. The group size effect in mixed-species groups lends support to the notion that pausing during locomotion is an antipredator tactic that can be reduced in the increased safety of larger groups, but other results suggest that additional functions, particularly route planning, are also of great importance. Benefits in terms of predator confusion and group movement coordination are also likely to play a role and remain a topic for further research.  相似文献   

11.
Arboreal and semi-arboreal mammals have remarkably diverse positional behavior and associated morpho-functional adaptations related to the three-dimensional nature of their arboreal habitat. In this context, we investigated the positional behavior of captive Siberian chipmunks (Tamias sibiricus), small bodied semi-arboreal sciurids, in an aviary-type wire-mesh cage containing both terrestrial and arboreal supports. We sampled four adult individuals during a five-month period using focal animal sampling every 30 s. Results showed that animals preferred 8–10 cm horizontal supports and always avoided vertical supports. Locomotion occurred on both terrestrial and 8–10 cm arboreal supports whereas postural behavior occurred primarily on 8–10 cm arboreal supports. Quadrupedal walk dominated during locomotion, and occurred primarily on terrestrial horizontal supports, as is observed for other squirrels. The predominance of quadrupedal locomotion is consistent with the postcranial morphology of chipmunks. In contrast, clawed locomotion occurred on wire mesh and on >13 cm arboreal vertical supports. Finally, pronograde and orthograde sitting, both on 8–10 cm arboreal supports and on terrestrial supports, were the predominant postures, implying general predisposition to selection of stable postures on stable supports for food item manipulation and ingestion.  相似文献   

12.
The ability to grasp and manipulate is often considered a hallmark of hominins and associated with the evolution of their bipedal locomotion and tool use. Yet, many other mammals use their forelimbs to grasp and manipulate objects. Previous investigations have suggested that grasping may be derived from digging behaviour, arboreal locomotion or hunting behaviour. Here, we test the arboreal origin of grasping and investigate whether an arboreal lifestyle could confer a greater grasping ability in musteloid carnivorans. Moreover, we investigate the morphological adaptations related to grasping and the differences between arboreal species with different grasping abilities. We predict that if grasping is derived from an arboreal lifestyle, then the anatomical specializations of the forelimb for arboreality must be similar to those involved in grasping. We further predict that arboreal species with a well‐developed manipulation ability will have articulations that facilitate radio‐ulnar rotation. We use ancestral character state reconstructions of lifestyle and grasping ability to understand the evolution of both traits. Finally, we use a surface sliding semi‐landmark approach capable of quantifying the articulations in their full complexity. Our results largely confirm our predictions, demonstrating that musteloids with greater grasping skills differ markedly from others in the shape of their forelimb bones. These analyses further suggest that the evolution of an arboreal lifestyle likely preceded the development of enhanced grasping ability.  相似文献   

13.
The large body mass and exclusively arboreal lifestyle of Sumatran orangutans identify them as a key species in understanding the dynamic between primates and their environment. Increased knowledge of primate locomotor ecology, coupled with recent developments in the standardization of positional mode classifications (Hunt et al. [1996] Primates 37:363-387), opened the way for sophisticated multivariate statistical approaches, clarifying complex associations between multiple influences on locomotion. In this study we present a log-linear modelling approach used to identify key associations between orangutan locomotion, canopy level, support use, and contextual behavior. Log-linear modelling is particularly appropriate because it is designed for categorical data, provides a systematic method for testing alternative hypotheses regarding interactions between variables, and allows interactions to be ranked numerically in terms of relative importance. Support diameter and type were found to have the strongest associations with locomotor repertoire, suggesting that orangutans have evolved distinct locomotor modes to solve a variety of complex habitat problems. However, height in the canopy and contextual behavior do not directly influence locomotion: instead, their effect is modified by support type and support diameter, respectively. Contrary to classic predictions, age-sex category has only limited influence on orangutan support use and locomotion, perhaps reflecting the presence of arboreal pathways which individuals of all age-sex categories follow. Effects are primarily related to a tendency for adult, parous females to adopt a more cautious approach to locomotion than adult males and immature subjects.  相似文献   

14.
Many primates now live in anthropogenic landscapes dominated by human activity such as agriculture. Conserving primates in such contexts requires detailed information about habitat use, including landscape features that may influence population viability. We studied Northeast Bornean orangutan (Pongo pygmaeus morio) habitat use in a forestry plantation in East Kalimantan, Indonesia. We conducted camera trapping and nest surveys at 13 locations across three habitat types in the plantation (planted acacia stands, planted eucalyptus stands, and secondary forest patches left uncut or allowed to regenerate) September 2012–March 2013, and calculated four measures of orangutan abundance for each location (independent photo captures/100 camera trap days, or RAI2; nest encounter rate; nest density; and orangutan density). Orangutans are relatively common in the plantation; they used all three habitat types and exhibited a higher RAI2 than 70% of other mammal species detected. A logistic regression found that proximity to natural forest areas best predicted orangutan abundance calculated using camera trap data (RAI2) but that habitat type combined with distance to natural forest best predicted orangutan abundance calculated using nest counts. This suggests that orangutans use planted areas for movement and feeding, but rely on patches of natural forest for resting and access to key resources. Our study and others indicate that orangutans can coexist with some human activities if provided with sufficient access to natural forest. However, we must conduct further research to facilitate effective conservation planning, including gathering additional details about habitat and resource use and possible long-term population impacts.  相似文献   

15.
Four chimpanzee (Pan troglodytes)mother—infant dyads and four orangutan (Pongo pygmaeus)motherinfant dyads were studied for the first 11 months of the infants’ lives. For both species, ventroventral contact and nipple contact decreased over time at a similar rate, but total contact decreased earlier in the orangutans and was 50% lower than for the chimpanzees at the end of the study. Social play between the mothers and the infants did not differ in frequency between the species, but orangutans played above the ground and chimpanzees on the ground. Solitary play differed in form between the species and, like social play, reflected their differences in arboreal and terrestrial proclivities. In addition, the orangutans engaged in solitary play considerably more frequently than the chimpanzees during the second half-year of life. The developmental differences in mother-infant contact and solitary play of these apes are consistent with the differences in their speciestypical social organization. The data may reflect, therefore, early development of species differences in the social and relatively solitary natures of chimpanzees and orangutans, respectively. An erratum to this article is available at .  相似文献   

16.
We investigated the relation between the footprint shape of the fore and hind feet of sigmodontine rodents and their levels of arboreal activity. Footprint shape was obtained by analyzing the impressions left by identified animals captured in the field after being forced to pass through ink-tracking tunnels or by pressing their previously inked feet on a paper sheet. We used geometric morphometric techniques that use superimposition of landmarks (centers of the pads) to obtain footprint shape variables, which were reduced using multivariate analysis (principal component analysis). Arboreal activity was inferred on the basis of the proportions of individuals captured in arboreal traps (1.5–2.5 m height). Regression analysis of body size and the variable that best represented the footprint shapes (first principal component—PC1) did not indicate significant allometric effects on such shapes. We did not detect any significant phylogenetic effects on the arboreal activity of the rodents, either. The results indicated that the PC1 concerning footprint shapes of ten sigmodontine rodents efficiently reflects the degree of use of arboreal strata by these animals. The species studied showed different levels of arboreal activity and their hind footprints (r 2 = 0.94) were better indicators of arboreality than the fore footprints (r 2 = 0.53). These findings suggest a likely trade off for the fore feet functions. Such functions are probably not strictly related to locomotion. Other biomechanical functions (e.g., shock absorption) and/or manipulation (e.g., food manipulation and grooming) may exert relatively greater influence on the shape of fore feet.  相似文献   

17.
High concentrations of orangutans remain in the multiple-use forests of the Lower Kinabatangan, Sabah, Malaysia. Compared to primary forest, the habitat is highly fragmented, characterized by a low tree density (332 stems/ha), small tree size (83.6% of trees are <20 m high), low basal area (18 m2/ha), abundance of canopy gaps and high level of soil disturbance. The forest structure and composition influence orangutan nesting patterns, and thus directly influence the results of nest surveys used to determine orangutan population size. In logged forests, tall and large trees are the preferred nesting sites of orangutans. The scarcity of suitable nesting sites in the logged-over forests of Kinabatangan, could partly explain the lower daily rate of nest construction (r = 1.00) versus those of other orangutan populations. The nest decay rate t recorded at the study site (average ± SD = 202 ± 151 days) strongly depends on the species of tree in which a nest is built. Our results illustrate that the nest-related parameters used for orangutan censuses fluctuate among habitat types and emphasize the need to determine specific values of r for specific orangutan populations and of t for different tree species in order to achieve accurate analysis of census data.  相似文献   

18.
Primates spend about half of their lives at sleeping sites, and their choice of sleeping sites may affect individual survival. We identified a total of 88 trees used by proboscis monkeys (Nasalis larvatus) as night sleeping sites on 16 nights from June to September 2008 in riverine, mangrove, and mixed mangrove–riverine forests along the Garama River, a tributary of the Klias River, in the west of Sabah, Malaysia. We recorded 11 variables for each tree, including the species, physical structure, distance from the riverbank, and connectivity with surrounding trees. We compared sleeping trees with 114 trees with ≥30 cm girth at breast height (GBH) located ≤50 m of the riverbank in 8 botanical plots (total 1 ha). Trees in the plots represented the general vegetation patterns of the study area. Choice of sleeping trees did not depend on the tree species. Although sleeping trees included trees ≤46 m from the river, those closer to riverbanks (5–35 m, n = 76) were more likely to be used as sleeping sites. Compared to the available trees, sleeping trees had larger trunks (mean±SD = 143.6 ± 56.9 cm GBH), and were taller (mean±SD = 34.3 ± 8.1 m), with greater number (median = 6; range = 12) and larger (mean±SD = 24.1 ± 15.2 cm circumference) main branches. They were also located near to other trees, with overlapping branches, creating good arboreal connectivity. Choice of sleeping trees by proboscis monkeys is likely to be related to risks of predation and injury from falling, as well as ease of social interaction and efficiency of locomotion.  相似文献   

19.
  1. Biologists commonly use nest boxes to study small arboreal mammals, including the forest dormouse (Dryomys nitedula). Hibernating dormouse species often experience pronounced seasonal variations in body mass, which might lead to sampling biases if it is not taken into account when designing nest boxes. In my study of the forest dormouse, I noticed that the entrance hole of nest boxes had been gnawed. I hypothesized that this behavior was exhibited by the individual dormice of higher body mass, who were unable to pass through the entrance holes.
  2. To test my hypothesis, I categorized the individual dormice present inside nest boxes based on their body mass and then compared the seasonal body mass dynamics with the timing of the gnawing behavior. I also compared nest box occupancy by the forest dormouse before and after the gnawing behavior.
  3. Interestingly, I found that the gnawing behavior was displayed exclusively when part of the dormouse population increased considerably in body mass, which supports my hypothesis. Additionally, nest box occupancy decreased significantly from 20% before to 4.6% after the gnawing behavior.
  4. I suggest that researchers include nest boxes with entrance holes larger than 4 cm in future studies of the forest dormouse to prevent the possible exclusion of the conspecifics that have higher body mass before hibernation. This type of sampling bias might also concern studies of other species, such as the fat dormouse, that similarly show pronounced seasonal variations in body mass. I recommend that biologists consider the seasonal body mass dynamics of the target species when designing nest boxes to minimize bias in ecological data and improve management actions.
  相似文献   

20.

Rehabilitation and release are commonly used for confiscated, surrendered, and rescued primates. To improve release efficacy it is important to generate accurate behavioral profiles of release candidates. Research on primates traditionally uses observer ratings to measure individual differences. This method is easily implemented, but its validity has been questioned. We evaluated whether observer ratings reflect behavioral data indicating forest adaptation in 18 free-ranging rehabilitant orangutans (Pongo pygmaeus morio). In 2017, we used a species-specific questionnaire to measure how often orangutans engaged in behaviors linked to living successfully in the wild (e.g., nest building) and the extent to which they express personality traits that may influence forest adaptation. We collected 11 months of observational data on 17 of the orangutans concurrently to validate the questionnaire items, and collected further questionnaire data for 16 of the individuals in 2019. We used regularized exploratory factor analysis (REFA) and parallel analysis to condense the ratings and determine that two factors could be reliably extracted. We conducted another REFA using the observational data, and calculated factor congruence coefficients following procrustean rotation. The first of the two factors represented forest skills and human aversion, and was congruent with observational data. The second factor reflected boldness, sociability, and exploration, and was not congruent with observational data. Ratings correlated significantly with observations for all five questionnaire items reflecting adaptation to forest life, and for three of seven items reflecting personality traits. We conclude that ratings can be a valid approach to obtain individual-based behavioral information reflecting forest adaptation in free-ranging rehabilitant orangutans, and may be particularly useful in summarizing behaviors relevant to forest adaptation that are otherwise challenging to gather in primates.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号