首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用盆栽方法,研究不同灌溉量处理下温室番茄日蒸腾量与单株总叶面积、土壤相对含水量、空气温度、空气相对湿度、太阳辐射等因子的相关关系,并建立日蒸腾量的回归模型.结果表明:番茄日蒸腾量与单株总叶面积、土壤相对含水量、空气温度、空气相对湿度和太阳辐射等因子呈显著的线性关系,各因子之间存在复杂的相互作用;土壤水分状况是番茄蒸腾量的主要决策因子,决策系数为27.4%;日最低空气相对湿度是主要限制因子,决策系数为-119.7%;番茄日蒸腾量预测值和实测值的回归系数平方值(R2)为0.81,回归估计标准误差(RMSE)和相对误差(RE)分别为68.52 g和19.4%.根据通径分析筛选主要影响因子建立的番茄日蒸腾量回归模型能够较好地模拟温室番茄日蒸腾量.  相似文献   

2.
温室番茄蒸腾量与其影响因子的相关分析及模型模拟   总被引:3,自引:0,他引:3  
采用盆栽方法,研究不同灌溉量处理下温室番茄日蒸腾量与单株总叶面积、土壤相对含水量、空气温度、空气相对湿度、太阳辐射等因子的相关关系,并建立日蒸腾量的回归模型.结果表明:番茄日蒸腾量与单株总叶面积、土壤相对含水量、空气温度、空气相对湿度和太阳辐射等因子呈显著的线性关系,各因子之间存在复杂的相互作用;土壤水分状况是番茄蒸腾量的主要决策因子,决策系数为27.4%;日最低空气相对湿度是主要限制因子,决策系数为-119.7%;番茄日蒸腾量预测值和实测值的回归系数平方值(R2)为0.81,回归估计标准误差(RMSE)和相对误差(RE)分别为68.52 g和19.4%.根据通径分析筛选主要影响因子建立的番茄日蒸腾量回归模型能够较好地模拟温室番茄日蒸腾量.  相似文献   

3.
荷木人工林蒸腾与冠层气孔导度特征及对环境因子的响应   总被引:1,自引:0,他引:1  
为了解荷木人工林水分利用特征及与环境因子的关系,利用Granier热消散探针于2007年12月(干季)和2008年9月(湿季)对荷木(Schima superba)人工林的15株样树树干液流进行测定并结合环境因子,计算林段总蒸腾(Jd)和冠层气孔导度(gs)。结果表明:边材面积(As)越大的径级对林段总蒸腾量的贡献越大。Jd干湿季差异显著,9月和12月平均分别为21.1 g H2O s-1和7.03 g H2O s-1,显示了明显的季节变化。环境因子与Jd呈极显著相关性,相关系数依次为:光合有效辐射(PAR)水汽压亏缺(VPD)空气相对湿度气温。gs在9月和12月的最大值分别为30.8 mmol m-2s-1和19.7 mmol m-2s-1;gs与PAR呈线性正相关;当PAR1000μmol m-2s-1且VPD2kPa时,gs与VPD呈线性负相关;偏相关分析表明土壤含水量与gs没有显著的相关性,显示所研究时间内土壤水分状况对荷木人工林蒸腾没有显著影响。  相似文献   

4.
环境因子对辣椒光合与蒸腾特性的影响   总被引:10,自引:2,他引:8  
采用灰色关联分析方法研究环境因子对辣椒(Capsicum annuum Linn.)光合和蒸腾特性的影响.结果表明,在强光照下影响净光合速率的环境因子大小顺序为相对湿度、CO2浓度、温度、光照强度、气孔导度;净光合速率与相对湿度、叶温呈显著的负相关,与CO2浓度呈极显著的正相关;蒸腾速率与气温呈极显著的正相关,与相对湿度呈极显著的负相关;水分利用效率与相对湿度呈极显著的正相关,与温度呈极显著的负相关.弱光照时影响净光合速率的环境因子大小顺序为光照强度、温度、相对湿度、CO2浓度;净光合速率与光照强度、CO2浓度呈显著的正相关,与相对湿度呈显著的负相关.在强光照下适当遮阳、灌水、增施CO2肥,在弱光照下减少荫蔽、通风透气、降低相对湿度、增加温度可促进辣椒光合作用,提高辣椒产量.  相似文献   

5.
郭卫华  李波  张新时  王仁卿 《生态学报》2007,27(10):4132-4140
多年生灌木沙棘和中间锦鸡儿是黄土高原生态重建的重要物种,设计人工模拟水分胁迫实验,测量沙棘和中间锦鸡儿蒸腾作用的各种指标,研究其蒸腾特性对水分胁迫的适应方式。结果表明,同等水分处理条件下,中间锦鸡儿单叶水平上的蒸腾速率高于沙棘。沙棘和中间锦鸡儿的蒸腾速率日进程在晴天、阴雨天和生长发育的不同阶段明显不同。夜间蒸腾占全天蒸腾的比例相当大,夜间蒸腾在不同物种之间、不同供水量之间存在明显差异,而且越干旱的环境比例越大。两种植物气孔阻力的季节变化格局在不同水分处理间大体相似。沙棘的昼夜蒸腾节律在各种水分处理条件下都表现出明显的气孔振荡现象,而中间锦鸡儿没有。叶片温度、光合有效辐射和气孔阻力是各种水分条件下沙棘和中间锦鸡儿蒸腾作用的共同的限制因子,相对于沙棘,中间锦鸡儿还更多地受到空气相对湿度的影响。  相似文献   

6.
郭卫华  李波  张新时  王仁卿 《生态学报》2007,27(10):4132-4140
多年生灌木沙棘和中间锦鸡儿是黄土高原生态重建的重要物种,设计人工模拟水分胁迫实验,测量沙棘和中间锦鸡儿蒸腾作用的各种指标,研究其蒸腾特性对水分胁迫的适应方式。结果表明,同等水分处理条件下,中间锦鸡儿单叶水平上的蒸腾速率高于沙棘。沙棘和中间锦鸡儿的蒸腾速率日进程在晴天、阴雨天和生长发育的不同阶段明显不同。夜间蒸腾占全天蒸腾的比例相当大,夜间蒸腾在不同物种之间、不同供水量之间存在明显差异,而且越干旱的环境比例越大。两种植物气孔阻力的季节变化格局在不同水分处理间大体相似。沙棘的昼夜蒸腾节律在各种水分处理条件下都表现出明显的气孔振荡现象,而中间锦鸡儿没有。叶片温度、光合有效辐射和气孔阻力是各种水分条件下沙棘和中间锦鸡儿蒸腾作用的共同的限制因子,相对于沙棘,中间锦鸡儿还更多地受到空气相对湿度的影响。  相似文献   

7.
 采用LI—6000便携式光合分析系统对毛乌素沙区主要植物种油蒿、中间锦鸡儿、旱柳进行了不同时期光合作用,蒸腾作用日进程的测定,并同步测定有效光辐射、空气相对湿度、叶温、气温、胞间CO2浓度、气孔阻力、叶片水势及土壤水势等因子;结果表明:不同时期、不同植物种其光合、蒸腾特征各异;植物的光合、蒸腾与环境因子和植物内部因子之间有密切关系,其中有效光辐射是影响光合作用、蒸腾作用诸因子中的主导因子,而气孔阻力变化则在调节光合和蒸腾中起着重要作用;不同植物种间气孔对环境条件变化的响应程度不同,以中间锦鸡儿最为灵敏;3种植物的水分利用效率表明,中间锦鸡儿的水分利用效率较油蒿、旱柳为高。  相似文献   

8.
不同年龄兴安落叶松树干呼吸及其与环境因子关系的研究   总被引:8,自引:0,他引:8  
采用动态红外气体分析法研究了两个不同年龄兴安落叶松(Larix gmelinii Rupr.)人工林内落叶松树干呼吸速率的季节变化,并分析了树干呼吸速率与环境因子的关系.两个年龄落叶松树干呼吸速率均是从春季到夏季逐渐升高,高峰值出现在7月(成熟林)和8月份(幼林),之后明显下降.幼林落叶松的树干呼吸速率(变化范围是1.99~6.15 μmol*m-2*s-1)显著高于成熟林(变化范围是1.52~3.38 μmol*m-2*s-1)(P<0.05).树干温度对树干呼吸影响较大,树干呼吸速率与树干温度呈指数相关关系;成熟林和幼林树干呼吸的Q10值分别为1.96和3.44.当空气相对湿度较低时,树干呼吸速率与其关系无明显规律,但当空气相对湿度很高时,能大大促进树干的呼吸作用.  相似文献   

9.
松嫩平原旱生芦苇群落土壤呼吸动态及影响因子   总被引:1,自引:0,他引:1  
为研究松嫩平原旱生芦苇群落土壤呼吸作用的动态变化及其影响因子,于2011年5—10月采用LI-6400土壤呼吸监测系统对旱生芦苇群落土壤呼吸进行连续野外观测,并分析水热因子对土壤呼吸的影响。结果表明:芦苇群落土壤呼吸具有明显的日变化和季节变化特征;其日变化为明显的单峰曲线,土壤呼吸速率峰值出现在中午11:00—13:00;7和8月芦苇群落土壤呼吸作用最强,10月土壤呼吸作用最弱。影响旱生芦苇群落土壤呼吸的主导因子是温度,土壤呼吸与近地表空气温度以及土壤0~10、10~20、20~30cm温度均有显著相关性(P<0.01),而近地表空气温度和土壤表层温度对土壤呼吸的影响最大。在5—10月芦苇群落土壤呼吸温度敏感性Q10值为1.2~1.65,变异系数为15.4%。土壤含水量和近地表空气相对湿度不是影响该地区芦苇群落土壤呼吸的主要因素。  相似文献   

10.
呼吸作用是指生活细胞中有机物在一系列酶的参与下,逐步氧化分解,同时释放能量的过程.无论是从能量代谢还是物质代谢来看,呼吸作用都居于植物代谢的中心地位.有氧呼吸是高等植物呼吸的主要形式,通常所说的呼吸作用,主要是指有氧呼吸,即在O2的参与下进行的呼吸作用.H2O不仅作为有氧呼吸的产物,而且也作为底物参与呼吸代谢.本文就潘瑞炽先生主编的<植物生理学>(第4版,以下简称潘书)中"植物的呼吸作用"的内容,从师范院校的教学角度,探讨植物呼吸作用中H2O的平衡问题.  相似文献   

11.
Summary Leaf gas exchange of Vigna unguiculata was influenced by short-term (day-to-day) changes in soil temperature and the response depended upon the aerial environment. When aerial conditions were constant at 30° C leaf temperature, high air humidity and moderate quantum flux, CO2 assimilation rate and leaf conductance increased with increases in soil temperature from 20 to 35° C, and this response was reversible. Decreases in CO2 assimilation rate and leaf conductance were observed at root temperatures above 30° C when root temperatures were increased from 20° C to 40° C and when air humidity was decreased in steps during the day. In contrast, varying soil temperatures between 20 to 35° C had no influence on gas exchange when shoots were subjected to a wide range of temperatures during each day.The gain ratio A/E remained constant at different air humidities when root temperature was less than or equal to 30° C indicating optimal gas exchange regulation, but changed with humidity at higher root temperatures. Leaf conductance responded independently from leaf water potential which remained relatively constant during individual experiments.The results indicate that plant responses to high root temperatures may have relevance to plant performance in semi-arid environments. They also illustrate the importance of controlling soil temperatures when studying the responses of potted plants in controlled aerial environments.Dedicated to K.F. Springer  相似文献   

12.
庐山山地上的鹅掌楸幼苗,在夏季晴天土壤供水充足的条件下,其叶片蒸腾速率的日变化为午后高峰型,日蒸腾量为7092molH2Om^2d^1,最大蒸腾速率达3.9mmolH2Om^-2s^-1,叶/敢温度差,敢孔导率,相对湿度等对蒸腾速度的影响最显著;鹅掌楸地的水分利用率日平均为4.142mmolCO23mol^-1H2O最高可达11.8mmolCO2mol^-1H2O。  相似文献   

13.
Plants of Plantago lanceolata L. and Zea mays L., cv. ‘Campo’were grown at two levels of light intensity. Especially in theroots, the rate of dry matter accumulation decreased at lowlight intensity. The carbohydrate content of both roots andshoots of P. lanceolata was not affected by light intensity.The relative contribution of SHAM1-sensitive respiration, thealternative chain, to total root respiration of both P. lanceolataand Z. mays, was not affected by light intensity during thedaytime. The alternative pathway was somewhat decreased at theend of the dark period, but not in the root tips (0–5mm) where it still contributed 56% in respiration. It was, therefore,concluded that photosynthesis is not a major factor in regulationof root growth in the species investigated. To see whether the effect of light intensity on root growthrate was via transpiration, plants of Z. mays were grown atdifferent air humidities. Both high humidity and low light intensityaffected the root morphology in such a way that the distancebetween the apex and the first laterals on the primary rootaxis increased. It is suggested that this effect on root morphologyis due to transpiration and the subsequent removal of root-producedinhibitors of lateral root growth; although light intensityalso affected the rate of dry matter accumulation of roots andthe rate was not affected by the humidity of the air. It is,therefore, concluded that the effect of light intensity on therate of dry matter accumulation of roots of Z. mays is not viaan effect on transpiration.  相似文献   

14.
土壤温度和湿度对长白松林土壤呼吸速率的影响   总被引:32,自引:1,他引:31  
2003年6月17日、8月日和10月10日,研究了长白山长白松林地内土壤呼吸速率和断根土壤呼吸速率日变化,并于2004年5~9月对其季节变化进行了测定.结果表明,土壤总呼吸速率和断根土壤呼吸速率的日变化均呈单峰型,峰值一般出现在12:00~14:00,8月份土壤呼吸速率的日变化幅度小于6月份和10月份.土壤总呼吸速率、断根土壤呼吸速率和根系呼吸速率具有明显的季节变化,6~8月份较高,5月份和9月份较低.2004年5~9月份,土壤总呼吸速率、断根土壤呼吸速率和根系呼吸速率的平均值分别为3.12、1.94和1.18 μmolCO2·m-2·s-1,根系呼吸对土壤总呼吸的贡献为26.5%~52.6%.土壤呼吸速率与土壤温度之间呈显著的指数相关,与土壤湿度之间呈线性相关.土壤总呼吸速率、断根土壤呼吸速率和根系呼吸速率的Q10值分别为2.44、2.55和2.27,断根土壤呼吸速率对温度的敏感程度大于土壤总呼吸速率和根系呼吸速率.土壤总呼吸速率对土壤湿度的敏感程度大于根系呼吸,断根土壤呼吸速率对土壤湿度的敏感程度最差.  相似文献   

15.
Upon exposure to waterlogged growing conditions two-year-old alder trees reduced total root mass. Roots were concentrated in the uppermost soil horizon, and only few coarse roots penetrated into deeper soil layers. Root porosity was only slightly affected and did not exceed 8 % in fine roots. Porosity of coarse roots was higher (27 %) but unaffected by growing conditions. The stem base area covered by lenticels increased strongly and so did the cross section diameter of the stem base. The latter showed a highly significant correlation with O (2) transport into the roots, measured by a Clark type oxygen electrode. Exposure of the lower 5 cm of the stem base, where lenticels were concentrated, to pure N (2) led to a cessation of O (2) transport, confirming that lenticels were the major site of air entry into the stem. In alder plants grown under waterlogged conditions, temperature had a pronounced effect on O (2) gas exchange of the root system. The temperature compensation point, i.e., the temperature where O (2) transport equals O (2) consumption by respiration, was 10.5 degrees C for the entire root system, when measured in a range of 0.15 - 0.20 mmol dissolved O (2) L (-1), which is typical for an open water surface equilibrated with air. O (2) net flow was inversely related to O (2) concentration in the rooting media, indicating that higher root and microbial respiration induced higher net fluxes of O (2) into the root system. With 0.04 mmol dissolved O (2) L (-1) nutrient solution, the temperature compensation point increased to 20 degrees C. Measurement of O (2) gradients in the rhizosphere of agar-embedded roots using O (2) microelectrodes showed a preference for O (2) release in the tip region of coarse roots. Increasing stem temperature over air temperature by 5 degrees C stimulated O (2) flux into the roots as suggested by the model of thermo-osmotic gas transport. However determination of stem and air temperature in a natural alder swamp in northern Germany revealed that within the experimental period of almost one year, temperature gradients required for thermo-osmotic gas transport were very seldom. From this it is concluded that under natural conditions in northern Germany, oxygen diffusion along the stem into the root system is driven by O (2) concentration gradients rather than by thermo-osmosis.  相似文献   

16.
The root respiration rate often shows an exponential or a linear relationship with temperature under laboratory conditions. However, under intact conditions in the field, the root respiration rates of some tree species decreased around midday despite an increment of the root temperature (Bekku et al. 2009). To clarify the cause of midday depression, we examined the relationships between the intact root respiration and parameters of leaf gas exchange through the simultaneous field measurement of the gas exchange in the leaf and root of Quercus crispula and Chamaecyparis obtusa, which are canopy trees. There were no significant relationships between the root respiration rates (R r) and the parameters of leaf gas exchange in the field. However, in C. obtusa, the relationships between R r and the transpiration rates (E) at 1 h before the measurement of R r were fitted by logarithmic function with a determination coefficient of 0.60–0.89. In the light-manipulation experiments using saplings, R r had significant positive correlations with E at 20 min before the measurement of R r, root temperature (T r), and the photosynthesis (P n) at 20 min before the measurement of R r. We examined which factor, P n or E, affects the root respiration rate through a manipulation experiment using a growth chamber regulating the ambient CO2 concentration and relative humidity independently under constant air temperature and photosynthetic photon flux density. As a result, the root respiration rates changed corresponding to E and not P n. These results suggest that the root respiration rate of trees changes significantly in the daytime and is affected by the leaf transpiration rate as well as the temperature.  相似文献   

17.
The effects of low air humidity and low root temperature (LRT) on water uptake, growth and aquaporin gene expression were investigated in rice plants. The daily transpiration of the plants grown at low humidity was 1.5- to 2-fold higher than that at high humidity. LRT at 13°C reduced transpiration, and the extent was larger at lower humidity. LRT also reduced total dry matter production and leaf area expansion, and the extent was again larger at lower humidity. These observations suggest that the suppression of plant growth by LRT is associated with water stress due to decreased water uptake ability of the root. On the other hand, the net assimilation rate was not affected by low humidity and LRT, and water use efficiency was larger for LRT. We found that low humidity induced coordinated up-regulation of many PIP and TIP aquaporin genes in both the leaves and the roots. Expression levels of two root-specific aquaporin genes, OsPIP2;4 and OsPIP2;5, were increased significantly after 6 and 13 d of LRT exposure. Taken together, we discuss the possibility that aquaporins are part of an integrated response of this crop to low air humidity and LRT.  相似文献   

18.
Energetic aspects of the relation between transpiration and respiration during the dark period were evaluated. One-year old seedlings of three trees, one bush and one annual plant were grown in controlled conditions. Experiments were performed under uniform environment during the day and two regimes of air relative humidity (RH) during the night, low (50 - 65 %) and high (95 %). For all investigated plant species the dark transpiration rate (E), the free energy of respiratory substrate, the entropy production and the free energy balance (FEB) of the dark respiration were higher at low than at high RH. E was linearly related to the FEBr 2 ranged between 0.63 and 0.90)  相似文献   

19.
The research described in this paper represents a part of a much broader research project with the general objective of describing the effects of elevated [CO2] and temperature on tree growth, physiological processes, and ecosystem-level processes. The specific objective of this research was to examine the below-ground respiratory responses of sugar maple (Acer saccharum Marsh.) and red maple (Acer rubrum L.) seedlings to elevated atmospheric [CO2] and temperature. Red maple and sugar maple seedlings were planted in the ground in each of 12 open-top chambers and exposed from 1994 through 1997 to ambient air or air enriched with 30 Pa CO2,< in combination with ambient or elevated (+4 °C) air temperatures. Carbon dioxide efflux was measured around the base of the seedlings and from root-exclusion zones at intervals during 1995 and 1996 and early 1997. The CO2 efflux rates averaged 0.4 μmol CO2 m-2 s-1 in the root-exclusion zones and 0.75 μmol CO2 m-2 s-1 around the base of the seedlings. Mineral soil respiration in root-exclusion zones averaged 12% higher in the high temperature treatments than at ambient temperature, but was not affected by CO2 treatments. The fraction of total efflux attributable to root + rhizosphere respiration ranged from 14 to 61% in measurements made around red maple plants, and from 35 to 62% around sugar maple plants. Root respiration rates ranged from 0 to 0.94 μmol CO2 s-1 m-2 of soil surface in red maple and from 0 to 1.02 in sugar maple. In both 1995 and 1996 root respiration rates of red maple were highest in high-CO2 treatments and lowest in high temperature treatments. Specific red maple root respiration rates of excised roots from near the soil surface in 1996 were also highest under CO2 enrichment and lowest in high temperature treatments. In sugar maple the highest rates of CO2 efflux were from around the base of plants exposed to both high temperature and high-CO2, even though specific respiration rates were< lowest for this species under the high temperature and CO2 enrichment regime. In both species, patterns of response to treatments were similar in root respiration and root mass, indicating that the root respiration responses were due in part to differences in root mass. The results underscore the need for separating the processes occurring in the roots from those in the forest floor and mineral soil in order to increase our understanding of the effects of global climate change on carbon sequestration and cycling in the below-ground systems of forests.  相似文献   

20.
Root respiration, measured as CO2 efflux, was studied for asucculent perennial from the Sonoran Desert, Agave deserti,with a new technique using individual, attached roots. The dailypatterns of root respiration closely followed the daily patternsof root temperature for both established roots and rain roots,with higher rates during the day when root temperature averaged27?C and lower rates at night when root temperature averaged17?C. When root temperature was raised from 5?C to 40?C, rootrespiration increased about 7-fold; from 45 ?C to 55 ?C, rootrespiration decreased about 2-fold, except for old establishedroots. Root respiration per unit dry weight for both root typesdecreased with age, the initial decrease being greater for rainroots than for established roots. Root respiration rates forrain roots were reduced to zero at a soil water potential (soil)of –0.9 MPa and did not recover upon rewatering. Upondrying, root respiration rates for established roots were maintainedat about 12% of maximum, even when soil fell to –1.6 MPa,and fully recovered 1.5 d after rewatering the soil. Such responsesof rain and established roots must be taken into account whenassessing the carbon costs for the root system. Key words: Agave deserti, CO2 exchange, root respiration, temperature, soil water potential  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号