首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endoplasmic reticulum (ER) stress-responsive alkaline phosphatase (ES-TRAP) serves as a sensitive indicator for ER stress. In response to heavy metals including cadmium, nickel and cobalt, hepatocytes and renal tubular cells expressing ES-TRAP exhibited ER stress and decreased ES-TRAP activity. In ES-TRAP transgenic mice, acute exposure to cadmium showed rapid, transient decreases in the activity of serum ES-TRAP. It was inversely correlated with the induction of endogenous ER stress markers in the liver and kidney. Our result provides first evidence for the acute, reversible induction of ER stress in vivo after exposure to heavy metal.  相似文献   

2.
To analyze the regulation of human serum amyloid P component (SAP) gene expression, we have produced seven transgenic mice. The 3.3 kb human SAP genes containing about 0.8 kb of 5' and 1.5 kb of 3' flanking region were injected into fertilized eggs of C57BL/6 mice. In five of the seven transgenic mice, human SAP was detected in the sera and serum concentrations were higher than that of human serum in three lines. The human SAP gene was expressed only in the liver. Amounts of human mRNA in the liver and serum concentrations of human SAP were roughly proportional to the copy number of the integrated gene. Human SAP production lowered the serum levels of mouse endogenous SAP. With the intraperitoneal administration of lipopolysaccharide, the mRNA levels in the liver and serum levels of mouse SAP increased several-fold in both the control and transgenic mice. On the other hand, neither the mRNA nor the serum levels of human SAP increased significantly.  相似文献   

3.
4.
Glucocorticoid regulation of metallothionein during murine development   总被引:6,自引:0,他引:6  
During the second half of gestation in the mouse there is a rise in both fetal (4-fold) and maternal (10-fold) metallothionein-I (MT-I) mRNA in the liver (but not in the kidney). There is a large increase in plasma corticosterone (the predominant murine glucocorticoid hormone), as well as an increase in hepatic zinc, which is coincident with the induction of MT-I mRNA. Considering that both of these compounds are known to be effective inducers of MT-I mRNA, we set out to determine whether either one or both were involved in the developmental regulation of MT-I genes. Several lines of evidence suggest that corticosterone is the principal inducer of fetal MT-I mRNA: The induction of MT-I mRNA in the liver, but not in the kidney, mimics glucocorticoid regulation but not metal regulation. Reduction of maternal corticosterone levels by treating mice with metyrapone lowered MT-I mRNA levels but had no effect on zinc levels. A line of transgenic mice carrying a metallothionein-growth hormone fusion gene that is responsive to metals but unresponsive to glucocorticoids was not developmentally regulated. Based on these observations, we propose that corticosterone is responsible for the induction of MT-I mRNA and that the resulting MT sequesters zinc and copper which may be used later in development.  相似文献   

5.
Glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) is a high-density lipoprotein-associated protein. However, the tissue source(s) for circulating GPI-PLD and whether serum levels are regulated are unknown. Because the diabetic state alters lipoprotein metabolism, and liver and pancreatic islets are possible sources of GPI-PLD, we hypothesized that GPI-PLD levels would be altered in diabetes. GPI-PLD serum activity and liver mRNA were examined in two mouse models of type 1 diabetes, a nonobese diabetic (NOD) mouse model and low-dose streptozotocin-induced diabetes in CD-1 mice. With the onset of hyperglycemia (2- to 5-fold increase over nondiabetic levels), GPI-PLD serum activity and liver mRNA increased 2- to 4-fold in both models. Conversely, islet expression of GPI-PLD was absent as determined by immunofluorescence. Insulin may regulate GPI-PLD expression, because insulin treatment of diabetic NOD mice corrected the hyperglycemia along with reducing serum GPI-PLD activity and liver mRNA. Our data demonstrate that serum GPI-PLD levels are altered in the diabetic state and are consistent with liver as a contributor to circulating GPI-PLD.  相似文献   

6.
7.
8.
The presence of the LH receptor (LHR) in nongonadal tissues of the reproductive tract has been reported, but localization studies have not been performed. Our objectives were to demonstrate the presence of LHR in the reproductive tract and to localize receptor expression. Reproductive age rats and mice were obtained and (125)I-hCG binding assays were performed on membrane preparations from the uterus, ovary, liver, and testis. In situ hybridizations were performed using (35)S-labeled antisense and sense RNA probes prepared from nucleotides 1-591 of the mouse LHR cDNA. Specific hCG binding was detected in membrane preparations from the ovary, uterus, and testis but not in the liver in both the rat and mouse. In the ovary, LHR mRNA was localized in theca cells, large follicles, and corpora lutea as expected. In the uterus, LHR mRNA was expressed in stromal cells of the endometrium and in the uterine serosa. Uterine smooth muscle cells had low levels of expression, and the endometrial epithelium was negative. In the oviduct, high levels of LHR expression were noted on the serosa and in subepithelial cells. Oviductal smooth muscle had low expression, and the epithelium was negative. We conclude that functional, nongonadal LHR are expressed in the mouse reproductive tract. The presence and localization of LHR expression in the mouse reproductive tract lay the foundation for transgenic models to address the physiologic role of these receptors.  相似文献   

9.
10.
We have generated transgenic mice carrying human ornithine decarboxylase gene. Two different transgene constructs were used: (i) a 5'-truncated human ornithine decarboxylase gene and (ii) an intact human ornithine decarboxylase gene. Transgenic mice carrying the 5'-truncated gene did not express human ornithine decarboxylase-specific mRNA. Transgenic mice carrying the intact human ornithine decarboxylase gene expressed human-specific ornithine decarboxylase mRNA in all tissues studied. However, as indicated by actual enzyme assays, the expression pattern was highly unusual. In comparison with their wild-type littermates, the transgenic mice exhibited greatly elevated enzyme activity in almost every tissue studied. Ornithine decarboxylase activity was moderately elevated in parenchymal organs such as liver, kidney, and spleen. Tissues like heart, muscle, lung, thymus, testis, and brain displayed an enzyme activity that was 20 to 80 times higher than that in the respective tissues of nontransgenic animals. The offspring of the first transgenic male founder animal did not show any overt abnormalities, yet their reproductive performance was reduced. The second transgenic founder animal, showing similar aberrant expression of ornithine decarboxylase in all tissues studied, including an extremely high activity in testis, was found to be infertile. Histological examination of the tissues of the latter animal revealed marked changes in testicular morphology. The germinal epithelium was hypoplastic, and the spermatogenesis was virtually totally shut off. Similar examination of male members of the first transgenic mouse line revealed comparable, yet less severe, histological changes in testis.  相似文献   

11.
The distribution of the secretory pathway Ca2+ -ATPase (SPCA1) was investigated at both the mRNA and protein level in a variety of tissues. The mRNA and the protein for SPCA1 were relatively abundant in rat brain, testis and testicular derived cells (myoid cells, germ cells, primary Sertoli cells and TM4 cells; a mouse Sertoli cell line) and epididymal fat pads. Lower levels were found in aorta (rat and porcine), heart, liver, lung and kidney. SPCA activities from a number of tissues were measured and shown to be particularly high in brain, aorta, heart, fat pads and testis. As the proportion of SPCA activity compared to total Ca2+ ATPase activity in brain, aorta, fat pads and testis were relatively high, this suggests that SPCA1 plays a major role in Ca2+ storage within these tissues. The subcellular localisation of SPCA1 was shown to be predominantly around the Golgi in both human aortic smooth muscle cells and TM4 cells.  相似文献   

12.
13.
Mouse cells transformed by a bovine papillomavirus recombinant vector containing the human interferon (IFN) beta 1 (IFN-beta 1) gene could be induced to produce human as well as mouse IFNs. The optimal conditions for induction of human IFN and of its mRNA in these transformants resembled those needed for mouse IFN: high concentrations of DEAE-dextran and low concentrations of polyriboinosinic acid-polyribocytidylic acid. Superinduction by inhibitors of protein synthesis which strongly stimulate IFN-beta 1 induction in human cells had only a small effect on human IFN induction in bovine papillomavirus IFN-beta 1-transformed mouse cells. In contrast, cycloheximide without double-stranded RNA could induce significant levels of human IFN in the bovine papillomavirus IFN-beta 1 mouse transformants. After cycloheximide treatment, these cells contained IFN-beta 1 mRNA whose 5' ends originated in the authentic start site of the human IFN-beta 1 gene, as shown by S1 nuclease mapping. The transferred human gene, propagated extrachromosomally in the mouse cells, was, therefore, inducible under conditions different from those in human cells. The results also confirmed that the inhibitor of protein synthesis, cycloheximide, can induce expression of a human IFN gene.  相似文献   

14.
The distribution of the secretory pathway Ca2+-ATPase (SPCA1) was investigated at both the mRNA and protein level in a variety of tissues. The mRNA and the protein for SPCA1 were relatively abundant in rat brain, testis and testicular derived cells (myoid cells, germ cells, primary Sertoli cells and TM4 cells; a mouse Sertoli cell line) and epididymal fat pads. Lower levels were found in aorta (rat and porcine), heart, liver, lung and kidney.SPCA activities from a number of tissues were measured and shown to be particularly high in brain, aorta, heart, fat pads and testis. As the proportion of SPCA activity compared to total Ca2+ ATPase activity in brain, aorta, fat pads and testis were relatively high, this suggests that SPCA1 plays a major role in Ca2+ storage within these tissues. The subcellular localisation of SPCA1 was shown to be predominantly around the Golgi in both human aortic smooth muscle cells and TM4 cells.  相似文献   

15.
The induction of NADPH-generating enzymes by polychlorinated biphenyls (PCB) in rats was investigated. The administration of PCB to rats for 3 and 14 days increased the activities of malic enzyme (ME, EC 1.1.1.40), glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49), and 6-phosphogluconate dehydrogenase (6PGD, EC 1.1.1.44) about 2-fold above the control level in the liver. Hepatic mRNA levels of ME, G6PD, and 6PGD, except for G6PD mRNA of the 14-day group, were also elevated to the same degree as the enzyme activities in PCB-treated rats. In rats fed a PCB-containing diet for 1 day, the hepatic mRNA levels of ME and G6PD were elevated prior to the induction of enzyme activity. In the kidney, lung, spleen, heart, and testis, the mRNA levels of ME, G6PD, and 6PGD were not affected by PCB. The induction of hepatic NADPH-generating enzymes would imply an increased demand of NADPH in the liver of rats fed with a PCB-containing diet.  相似文献   

16.
目的以NF—KB转基因BALB/c小鼠建立一个LPS/D—GaIN诱发的急性致死性肝损伤模型。方法采取腹腔注射高剂量的LPS/D-GalN建立急性致死性肝损伤小鼠模型,观察模型小鼠的促炎症细胞因子水平和NF—KB的活性改变,以及肝脏功能和病理改变情况。结果模型组小鼠生存时间为8—10h,模型建立后小鼠血清TNF—a、IL-6和MCP-1水平显著升高,在2—4h达到高峰;肝脏外观出现瘀血和出血,肝脏小叶被严重破坏,肝细胞严重坏死和出血;血清ALT/AST水平在模型诱发后持续迅速上升;整体成像显示胛-KB的活性在4~6h达到高峰。正常对照组小鼠以上指标无显著变化。结论成功建立LPS/D-GalN诱发的M-船转基因小鼠的急性致死性肝损伤模型。  相似文献   

17.
In vivo responses to interferon (IFN) in mice were determined by measuring the steady-state levels of induced mRNAs following injection of IFN and poly(I)-poly(C). With cDNA probes for mouse 2'-5' oligoadenylate synthetase (2-5A synthetase) and 1-8, constitutive expression of the corresponding mRNA was detectable in different organs of normal C3H/He mice. These mRNA levels were increased by as much as 15-fold over control levels in various tissues, including the brain, after IFN and poly(I)-poly(C) treatment, coincident with increases in 2-5A synthetase enzyme activity. The basal activity level of this enzyme could be reduced in normal mice by treatment with anti-mouse IFN (alpha + beta) antibody. This treatment also reduced the levels of 2-5A synthetase and 1-8 mRNAs. Thus, physiological levels of circulating IFN maintain elevated levels of IFN-induced mRNAs in mice. Furthermore, changes in 2-5A synthetase enzyme activity reflect the changes in gene expression in vivo.  相似文献   

18.
19.
Acute phase serum amyloid A proteins (A-SAAs) are multifunctional apolipoproteins produced in large amounts during the acute phase of an inflammation and also during the development of chronic inflammatory diseases. In this study we present a Saa1-luc transgenic mouse model in which SAA1 gene expression can be monitored by measuring luciferase activity using a noninvasive imaging system. When challenged with LPS, TNF-alpha, or IL-1beta, in vivo imaging of Saa1-luc mice showed a 1000- to 3000-fold induction of luciferase activity in the hepatic region that peaked 4-7 h after treatment. The induction of liver luciferase expression was consistent with an increase in SAA1 mRNA in the liver and a dramatic elevation of the serum SAA1 concentration. Ex vivo analyses revealed luciferase induction in many tissues, ranging from several-fold (brain) to >5000-fold (liver) after LPS or TNF-alpha treatment. Pretreatment of mice with the proteasome inhibitor bortezomib significantly suppressed LPS-induced SAA1 expression. These results suggested that proteasome inhibition, perhaps through the NF-kappaB signaling pathway, may regulate SAA1 expression. During the development of acute arthritis triggered by intra-articular administration of zymosan, SAA1 expression was induced both locally at the knee joint and systemically in the liver, and the induction was significantly suppressed by bortezomib. Induction of SAA1 expression was also demonstrated during contact hypersensitivity induced by topical application of oxazolone. These results suggest that both local and systemic induction of A-SAA occur during inflammation and may contribute to the pathogenesis of chronic inflammatory diseases associated with amyloid deposition.  相似文献   

20.
Mice are frequently used in models for the study of immunological processes related to inflammation. Since it is known that the degree of fucosylation of human acute phase proteins (APPs) is altered as a consequence of an inflammatory response, we have undertaken this study to gain more insight into the fucosylation of acute phase proteins as it occurs in mouse liver. Mice carrying the cluster of the three genes encoding human α1-acid glycoprotein (AGP), one of the well known APPs, were used and the fucosylation of AGP was assessed. A complete absence of fucosylation on the transgenic human AGP was found, which is in sharp contrast to AGP in human serum, of which a major proportion is normally α3-fucosylated. Remarkably, a large proportion of mouse AGP did contain fucose residues. Fucosylation was also detected on another APP, mouse protease inhibitor (PI). α3-Fucosylation of the transgenic human AGP can be achieved in vitro, using an α3/4-fucosyltransferase (α3/4-FucT) isolated from human milk, showing that the glycoprotein is not intrinsically resistant to fucosylation. Upon subsequent measurement of the activities of the possible fucosyltransferases present in liver membranes of parent and transgenic mice, only an N-linked-core α6-FucT and no α2-, α3- or α4-FucT activity was detected. This indicates that fucose residues found on the mouse serum proteins AGP and PI, which are synthesized in the liver, are most probably in α6-linkage to the core chitobiosyl unit. Interestingly, both α6- and α3-FucT activity was detectable in human liver membranes. None of the above mentioned findings were influenced by the induction of an acute phase response by administration of bacterial lipopolysaccharide. This study shows that: (a) α6-FucT is probably a protein specific-glycosyltransferase, since mouse AGP, but not human AGP, may be used as an acceptor; (b) in contrast to human liver, mouse liver does not express any α3-FucT-activity, thereby making the mouse incapable of producing the Sialyl Lewisx epitope on APPs, which is an important part of the inflammatory reaction in humans. This last finding indicates that the mouse is not suitable as a model for the study of those phenomena related to inflammation in humans, in which glycosylation of acute phase proteins could play a significant role. © 1998 Rapid Science Ltd  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号