首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid deposits in the brains of patients with Alzheimer's disease (AD) contain a protein (beta A4) which is abnormally cleaved from a larger transmembrane precursor protein (APP). APP is believed to be normally released from membranes by the action of a protease referred to as APP secretase. Amyloid deposits have also been shown to contain the enzyme acetylcholinesterase (AChE). In this study, a protease activity associated with AChE was found to possess APP secretase activity, stimulating the release of a soluble 100K form of APP from HeLa cells transfected with an APP cDNA. The AChE-associated protease was strongly and specifically inhibited by soluble APP (10 nM) isolated from human brain. The AChE-associated protease cleaved a synthetic beta A4 peptide at the predicted cleavage site. As AChE is decreased in AD, a deficiency of its associated protease might explain why APP is abnormally processed in AD.  相似文献   

2.
The major pathological change in Alzheimer's disease is the deposition of amyloid beta/A4-protein (beta P) in the brain. beta P is derived from a small part of the much larger amyloid protein precursor (APP). In the normal condition, APP is cleaved in the interior of beta P, preventing the formation of beta P, by a hypothetical proteinase "secretase". To characterize this enzyme, APP and mutated APPs were expressed by cDNA transfection in COS-1 cells, a monkey kidney fibroblast derived cell line. The mutant APPs with the mutations of the proposed cleavage site (Gln686-Lys687) were processed in the same way as wild APP. The deleted mutant APP (deletion of Arg676-Asp694) was also cleaved in a similar way to wild APP. The cleavage site of this deletion mutant was located at the 12 amino acid residues from the predicted membrane spanning domain. Hence, "secretase" cleaves APP, depending not on its specific amino acid sequence, but probably on the relative conformation with plasma membrane.  相似文献   

3.
4.
5.
Recent studies indicated that the formation of a major constituent of Alzheimer's disease (AD) senile plaques, called beta A4-peptide, does not result from normal processing of its precursor, amyloid precursor protein (APP). Since proteolytic cleavage of APP inside its beta A4 sequence was found to be part of APP processing the formation of the beta A4-peptide seems to be prevented under normal conditions. We considered whether in AD one of the endogenous proteinase inhibitors might interfere with APP processing. After we had recently found that cultured human neuronal cells synthesize the most potent of the known human proteinase inhibitors, alpha-2-macroglobulin (alpha 2M), upon stimulation with the inflammatory mediator interleukin-6 (IL-6) we now investigated whether alpha 2M and IL-6 could be detected in AD brains. Here we report that AD cortical senile plaques display strong alpha 2M and IL-6 immunoreactivity while no such immunoreactivity was found in age-matched control brains. Strong perinuclear alpha 2M immunoreactivity in hippocampal CA1 neurons of Alzheimer's disease brains indicates that neuronal cells are the site of alpha 2M synthesis in AD brains. We did not detect elevated IL-6 or alpha 2M levels in the cerebrospinal fluid of AD patients. Our data indicate that a sequence of immunological events which seem to be restricted to the local cortical environment is part of AD pathology.  相似文献   

6.
A distinguishing feature of Alzheimer's disease (AD) is the deposition of amyloid plaques in brain parenchyma. These plaques arise by the abnormal accumulation of beta A4, a proteolytic fragment of amyloid precursor protein (APP). Despite the fact that neurons are dramatically affected in the course of the disease, little is known about the neuronal processing of APP. To address this question we have expressed in fully mature, synaptically active rat hippocampal neurons, the neuronal form of human APP (APP695), two mutant forms of human APP associated with AD, and the mouse form of APP (a species known not to develop amyloid plaques). Protein expression was achieved via the Semliki Forest Virus system. Expression of wild type human APP695 resulted in the secretion of beta A4-amyloid peptide and the intracellular accumulation of potential amyloidogenic and non-amyloidogenic fragments. The relative amount of amyloid-containing fragments increased dramatically during expression of the clinical mutants, while it decreased strongly when the mouse form of APP was expressed. 'Humanizing' the rodent APP sequence by introducing three mutations in the beta A4-region also led to increased production of amyloid peptide to levels similar to those obtained with human APP. The single Gly601 to Arg substitution alone was sufficient to triple the ratio of beta A4-peptide to non-amyloidogenic p3-peptide. Due to the capacity of these cells to secrete and accumulate intracellular amyloid fragments, we hypothesize that in the pathogenesis of AD there is a positive feed-back loop where neurons are both producers and victims of amyloid, leading to neuronal degeneration and dementia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Liu K  Doms RW  Lee VM 《Biochemistry》2002,41(9):3128-3136
Amyloid beta peptides (A beta) are generated by the proteolytic processing of the amyloid beta precursor protein (APP). The newly identified beta-site APP-cleaving enzyme (BACE) cleaves APP at Asp1 as well as between Tyr10 and Glu11 of A beta, producing C-terminal fragments (CTFs) C99 and C89, respectively. Subsequent cleavage by gamma-secretase gives rise to A beta 1-40/42 and A beta 11-40/42. Although both full-length and A beta peptides truncated at residue 11 have been identified in amyloid plaques in the AD brain, the relative proportion of these two cleavage products produced by BACE and secreted into the medium by cultured cells is unknown. Using cell lines stably overexpressing BACE, we found that A beta 11-40 and A beta 11-42 are major A beta cleavage products generated by BACE. We further showed that BACE utilizes both full-length APP as well as C99 as substrates for the production of C89, and that A beta 11-40/42 can be generated by sequential cleavage of single APP molecules by BACE and gamma-secretase. Taken together, the abundance of A beta 11-40/42 produced by BACE suggests that their roles in AD pathogenesis may be underestimated.  相似文献   

8.
Alzheimer beta-amyloid peptides: normal and abnormal localization   总被引:5,自引:0,他引:5  
Alzheimer's disease (AD) neuropathology is characterized by accumulation of "senile" plaques (SPs) and neurofibrillary tangles (NFTs) in vulnerable brain regions. SPs are principally composed of aggregates of up to 42/43 amino acid beta-amyloid (A beta) peptides. The discovery of familial AD (FAD) mutations in the genes for the amyloid precursor protein (APP) and presenilins (PSs), all of which increase A beta42 production, support the view that A beta is centrally involved in the pathogenesis of AD. A beta42 aggregates readily, and is thought to seed the formation of fibrils, which then act as templates for plaque formation. A beta is generated by the sequential intracellular cleavage of APP by beta-secretase to generate the N-terminal end of A beta, and intramembranous cleavage by gamma-secretase to generate the C-terminal end. Cell biological studies have demonstrated that A beta is generated in the ER, Golgi, and endosomal/lysosomal system. A central question involving the role of A beta in AD concerns how A beta causes disease and whether it is extracellular A beta deposition and/or intracellular A beta accumulation that initiates the disease process. The most prevalent view is that SPs are composed of extracellular deposits of secreted A beta and that A beta causes toxicity to surrounding neurons as extracellular SP. The recent emphasis on the intracellular biology of APP and A beta has led some investigators to consider the possibility that intraneuronal A beta may directly cause toxicity. In this review we will outline current knowledge of the localization of both intracellular and extracellular A beta.  相似文献   

9.
Alzheimer disease (AD), the most frequent cause of dementia, is characterized by an important neuronal loss. A typical histological hallmark of AD is the extracellular deposition of beta-amyloid peptide (A beta), which is produced by the cleavage of the amyloid precursor protein (APP). Most of the gene mutations that segregate with the inherited forms of AD result in increasing the ratio of A beta 42/A beta 40 production. A beta 42 also accumulates in neurons of AD patients. Altogether, these data strongly suggest that the neuronal production of A beta 42 is a critical event in AD, but the intraneuronal A beta 42 toxicity has never been demonstrated. Here, we report that the long term expression of human APP in rat cortical neurons induces apoptosis. Although APP processing leads to production of extracellular A beta 1-40 and soluble APP, these extracellular derivatives do not induce neuronal death. On the contrary, neurons undergo apoptosis as soon as they accumulate intracellular A beta 1-42 following the expression of full-length APP or a C-terminal deleted APP isoform. The inhibition of intraneuronal A beta 1-42 production by a functional gamma-secretase inhibitor increases neuronal survival. Therefore, the accumulation of intraneuronal A beta 1-42 is the key event in the neurodegenerative process that we observed.  相似文献   

10.
11.
γ‐Secretase is a transmembrane protease complex responsible for the processing of a multitude of type 1 transmembrane proteins, including amyloid precursor protein (APP) and Notch. A functional complex is dependent on the assembly of four proteins: presenilin (PS), nicastrin, Aph‐1 and Pen‐2. Little is known about how the substrates are selected by γ‐secretase, but it has been suggested that γ‐secretase associated proteins (GSAPs) could be of importance. For instance, it was recently reported from studies in cell lines that TMP21, a transmembrane protein involved in trafficking, binds to γ‐secretase and regulates the processing of APP‐derived substrates without affecting Notch cleavage. Here, we present an efficient and selective method for purification and analysis of γ‐secretase and GSAPs. Microsomal membranes were prepared from rat or human brain and incubated with a γ‐secretase inhibitor coupled to biotin via a long linker and a S‐S bridge. After pulldown using streptavidin beads, bound proteins were eluted under reducing conditions and digested by trypsin. The tryptic peptides were subjected to LC‐MS/MS analysis, and proteins were identified by sequence data from MS/MS spectra. All of the known γ‐secretase components were identified. Interestingly, TMP21 and the PS associated protein syntaxin1 were associated to γ‐secretase in rat brain. We suggest that the present method can be used for further studies on the composition of the γ‐secretase complex.  相似文献   

12.
A series of proteinase inhibitors active against proteinases of all four major classes, including highly purified and well-characterized alpha 2-macroglobulin, added to the cell culture medium of murine Neuro 2a neuroblastoma cells did not interfere with APP secretase activity. We therefore advance the hypothesis that APP secretase activity is localized in an intracellular compartment.  相似文献   

13.
Despite intensive studies of the secretase‐mediated processing of the amyloid precursor protein (APP) to form the amyloid β‐peptide (Aβ), in relation to Alzheimer's disease (AD), no new therapeutic agents have reached the clinics based on reducing Aβ levels through the use of secretase inhibitors or immunotherapy. Furthermore, the normal neuronal functions of APP and its various metabolites still remain under‐investigated and unclear. Here, we highlight emerging areas of APP function that may provide new insights into synaptic development, cognition, and gene regulation. By modulating expression levels of endogenous APP in primary cortical neurons, the frequency and amplitude of calcium oscillations is modified, implying a key role for APP in maintaining neuronal calcium homeostasis essential for synaptic transmission. Disruption of this homeostatic mechanism predisposes to aging and AD. Synaptic spine loss is a feature of neurogeneration resulting in learning and memory deficits, and emerging evidence indicates a role for APP, probably mediated via one or more of its metabolites, in spine structure and functions. The intracellular domain of APP (AICD) has also emerged as a key epigenetic regulator of gene expression controlling a diverse range of genes, including APP itself, the amyloid‐degrading enzyme neprilysin, and aquaporin‐1. A fuller understanding of the physiological and pathological actions of APP and its metabolic network could provide new opportunities for therapeutic intervention in AD.  相似文献   

14.
15.
16.
An important pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid‐beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ‐secretase is responsible for the intramembrane proteolysis of the amyloid‐β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ‐secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post‐translational modification known to modulate the activity of many different enzymes, we used electrospray (LC‐MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ‐secretase. We identified 11 new single or double phosphosites in two well‐defined domains of Presenilin‐1 (PS1), the catalytic subunit of the γ‐secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ‐secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ‐secretase activity and the production of the Alzheimer's Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD.

  相似文献   


17.
BACKGROUND: High levels of A beta in the cerebral cortex distinguish demented Alzheimer's disease (AD) from nondemented elderly individuals, suggesting that decreased amyloid-beta (A beta) peptide clearance from the brain is a key precipitating factor in AD. MATERIALS AND METHODS: The levels of A beta in brain and plasma as well as apolipoprotein E (ApoE) in brain were investigated by enzyme-linked immunosorbent assay (ELISA) and Western blotting at various times during the life span of the APP23 transgenic (Tg) and control mice. Histochemistry and immunocytochemistry were used to assess the morphologic characteristics of the brain parenchymal and cerebrovascular amyloid deposits and the intracellular amyloid precursor protein (APP) deposits in the APP23 Tg mice. RESULTS: No significant differences were found in the plasma levels of A beta between the APP23 Tg and control mice from 2-20 months of age. In contrast, soluble A beta levels in the brain were continually elevated, increasing 4-fold at 2 months and 33-fold in the APP23 Tg mice at 20 months of age when compared to the control mice. Soluble A beta42 was about 60% higher than A beta40. In the APP23 Tg mice, insoluble A beta40 remained at basal levels in the brain until 9 months and then rose to 680 microg/g cortex by 20 months. Insoluble A beta40 was negligible in non-Tg mice at all ages. Insoluble A beta42 in APP23 Tg mice rose to 60 microg/g cortex at 20 months, representing 24 times the control A beta42 levels. Elevated levels of ApoE in the brain were observed in the APP23 Tg mice at 2 months of age, becoming substantially higher by 20 months. ApoE colocalized with A beta in the plaques. Beta-amyloid precursor protein (betaAPP) deposits were detected within the neuronal cytoplasm from 4 months of age onward. Amyloid angiopathy in the APP23 Tg mice increased markedly with age, being by far more severe than in the Tg2576 mice. CONCLUSIONS: We suggest that the APP23 Tg mouse may develop an earlier blockage in A beta clearance than the Tg2576 mice, resulting in a more severe accumulation of A beta in the perivascular drainage pathways and in the brain. Both Tg mice reflect decreased A beta elimination and as models for the amyloid cascade they are useful to study AD pathophysiology and therapy.  相似文献   

18.
The main characteristic changes observed in Alzheimer's disease (AD) are the presence of neurofibrillary tangles and the deposition of amyloid A4 peptides. The most abundant amyloid A4 peptide species in AD (which we tentatively named A4') is composed of 39 amino acids, which is devoid of the 3 N-terminal amino acids, Asp-Ala-Glu, of the originally reported A4 peptide. We synthesized a model peptide substrate, Suc-Ala-Glu-methylcoumarinamide (MCA), to identify the proteinase that splits the A4' peptide. DEAE-cellulose column chromatography of rat liver and porcine brain extracts showed that only one peak material digested the synthetic substrate at pH 8. The results for the final preparation indicate that the Suc-Ala-Glu-MCA-degrading enzyme is a high-molecular-mass proteinase, with a molecular mass of above 500,000, and is composed of several low-molecular-mass subunits. These results suggest that a non-lysosomal multicatalytic proteinase (we named this enzyme ingensin (ingens = large in Latin). Ishiura, S. et al. (1985) FEBS Lett. 189, 119-123) catalyzes the above reaction. Antiserum against the purified multicatalytic proteinase, ingensin, crossreacted with the purified Suc-Ala-Glu-MCA-degrading proteinase. It is likely that ingensin shows a similar action toward amyloid precursor protein (APP) in vivo.  相似文献   

19.
The two presenilin‐1 (PS1) and presenilin‐2 (PS2) homologs are the catalytic core of the γ‐secretase complex, which has a major role in cell fate decision and Alzheimer's disease (AD) progression. Understanding the precise contribution of PS1‐ and PS2‐dependent γ‐secretases to the production of β‐amyloid peptide (Aβ) from amyloid precursor protein (APP) remains an important challenge to design molecules efficiently modulating Aβ release without affecting the processing of other γ‐secretase substrates. To that end, we studied PS1‐ and PS2‐dependent substrate processing in murine cells lacking presenilins (PSs) (PS1KO, PS2KO or PS1‐PS2 double‐KO noted PSdKO) or stably re‐expressing human PS1 or PS2 in an endogenous PS‐null (PSdKO) background. We characterized the processing of APP and Notch on both endogenous and exogenous substrates, and we investigated the effect of pharmacological inhibitors targeting the PSs activity (DAPT and L‐685,458). We found that murine PS1 γ‐secretase plays a predominant role in APP and Notch processing when compared to murine PS2 γ‐secretase. The inhibitors blocked more efficiently murine PS2‐ than murine PS1‐dependent processing. Human PSs, especially human PS1, expression in a PS‐null background efficiently restored APP and Notch processing. Strikingly, and contrary to the results obtained on murine PSs, pharmacological inhibitors appear to preferentially target human PS1‐ than human PS2‐dependent γ‐secretase activity.  相似文献   

20.
Production of Aβ by γ‐secretase is a key event in Alzheimer's disease (AD). The γ‐secretase complex consists of presenilin (PS) 1 or 2, nicastrin (ncstn), Pen‐2, and Aph‐1 and cleaves type I transmembrane proteins, including the amyloid precursor protein (APP). Although ncstn is widely accepted as an essential component of the complex required for γ‐secretase activity, recent in vitro studies have suggested that ncstn is dispensable for APP processing and Aβ production. The focus of this study was to answer this controversy and evaluate the role of ncstn in Aβ generation and the development of the amyloid‐related phenotype in the mouse brain. To eliminate ncstn expression in the mouse brain, we used a ncstn conditional knockout mouse that we mated with an established AD transgenic mouse model (5XFAD) and a neuronal Cre‐expressing transgenic mouse (CamKIIα‐iCre), to generate AD mice (5XFAD/CamKIIα‐iCre/ncstnf/f mice) where ncstn was conditionally inactivated in the brain. 5XFAD/CamKIIα‐iCre/ncstnf/f mice at 10 week of age developed a neurodegenerative phenotype with a significant reduction in Aβ production and formation of Aβ aggregates and the absence of amyloid plaques. Inactivation of nctsn resulted in substantial accumulation of APP‐CTFs and altered PS1 expression. These results reveal a key role for ncstn in modulating Aβ production and amyloid plaque formation in vivo and suggest ncstn as a target in AD therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号