首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conformational dynamic and enthalpy changes associated with pH induced unfolding of apomyoglobin were studied using photoacoustic calorimetry and photothermal beam deflection methods. The transition between the native state and the I intermediate was induced by a nanosecond pH jump from o-nitrobenzaldehyde photolysis. Deconvolution of photoacoustic waves indicates two kinetic processes. The fast phase ( < 50ns) is characterized by a volume expansion of 8.8 ml mol–1. This process is followed by a volume contraction of about –22 ml mol–1 ( 500 ns). Photothermal beam deflection measurements do not reveal any volume changes on the time scale between 100 s and 5 ms. We associate the volume contraction with structural changes occurring during the transition between the native state and the I intermediate. The lack of any processes on the ms time scale may indicate the absence of structural events involving larger conformational changes of apomyoglobin after the pH jump.  相似文献   

2.
A novel photosynthetic technique, photothermal deflection spectroscopy, is presented which is based on the mirage effect and allows the rapid measurement of thermal deactivation of excited pigments in leaf samples placed in an open cell. Modulated heat emission from leaves illuminated with intensity-modulated light was measured via the detection of the periodic deflection of a laser beam parallel to the sample surface. Photothermal deflection signals can be monitored in vivo in leaves placed in various, liquid or gaseous, environments with a satisfactory signal-to-noise ratio close to 60–80 (in distilled water) at low modulation frequencies (below 50 Hz). Using this new and simple photothermal method, it was possible to easily obtain useful information on the leaf photochemical activity and its light-saturation characteristics under normal or stress conditions, suggesting that in vivo deflection signals could be used for assaying the photosynthetic state of health of crop plants. The beam deflection method presented in this paper appears to be a potentially useful photosynthetic tool complementary to the related photoacoustic technique.Abbreviations DCMU dichlorophenyldimethylurea - PD photothermal deflection - PL photochemical energy storage - S/N ratio signal-to-noise ratio  相似文献   

3.
The focus of this study is to examine volume and enthalpy profiles of ligand binding associated with CO-Fe(II) tetrakis-(4-sulfonato phenyl)-porphyrin (COFe(II)4SP) in aqueous solution. Temperature dependent photothermal beam deflection was employed to probe the overall enthalpy and volume changes associated with CO-photolysis and recombination. The analysis demonstrates that ligand recombination occurs with a pseudo first order rate constant of (2.5+/-0.2)x10(4) s(-1) (at 25 degrees C) with a corresponding volume decrease of 6+/-1 ml/mol. The activation enthalpy (DeltaH(double dagger)) and volume (DeltaV(double dagger)) change for CO recombination (determined from temperature/pressure dependent transient absorption spectroscopy) are found to be 3.9 kcal/mol and 8.2 ml/mol, respectively. These data are consistent with a mechanism in which photolysis yields a five-coordinate high spin (H(2)O)Fe(II)4SP complex that recombines in a single step to form the low spin (CO)(H(2)O)Fe(II)4SP complex. Base elimination, often associated with CO photolysis from hemes, is not observed in this system. The overall volume changes suggest a transition state with significant high spin character. Furthermore, these results demonstrate the utility of coupling photothermal techniques with variable pressure/temperature transient absorption spectroscopy to probe heme reaction dynamics.  相似文献   

4.
The approach of photocalorimetry to decide on the true quantum requirement of photosynthesis — one of the main issues of the research in the first half of the century and a source of a bitter debate — is described. Bill Arnold's original approach to get into the true answer is reflected from the point of view of present day calorimetric techniques.Abbreviations PA photoacoustic(s) - PTR photothermal radiometry - PBD probe beam deflection (thermal measurement) - ES energy storage - QR quantum requirement This is CIW/DPB Contribution No. 1286.  相似文献   

5.
The energetics of the individual reaction steps in the catalytic cycle of photosynthetic water oxidation at the Mn4Ca complex of photosystem II (PSII) are of prime interest. We studied the electron transfer reactions in oxygen-evolving PSII membrane particles from spinach by a photothermal beam deflection technique, allowing for time-resolved calorimetry in the micro- to millisecond domain. For an ideal quantum yield of 100%, the enthalpy change, ΔH, coupled to the formation of the radical pair (where YZ is Tyr-161 of the D1 subunit of PSII) is estimated as −820 ± 250 meV. For a lower quantum yield of 70%, the enthalpy change is estimated to be −400 ± 250 meV. The observed nonthermal signal possibly is due to a contraction of the PSII protein volume (apparent ΔV of about −13 Å3). For the first time, the enthalpy change of the O2-evolving transition of the S-state cycle was monitored directly. Surprisingly, the reaction is only slightly exergonic. A value of ΔH(S3 ⇒ S0) of −210 meV is estimated, but also an enthalpy change of zero is within the error range. A prominent nonthermal photothermal beam deflection signal (apparent ΔV of about +42 Å3) may reflect O2 and proton release from the manganese complex, but also reorganization of the protein matrix.  相似文献   

6.
Mitochondrial DNA (mtDNA) contains higher steady-state levels of oxidative damage and mutates at rates significantly greater than nuclear DNA. Oxidative lesions in mtDNA are removed by a base excision repair (BER) pathway. All mtDNA repair proteins are nuclear encoded and imported. Most mtDNA repair proteins so far discovered are either identical to nuclear DNA repair proteins or isoforms of nuclear proteins arising from differential splicing. Regulation of mitochondrial BER is therefore not expected to be independent of nuclear BER, though the extent to which mitochondrial BER is regulated with respect to mtDNA amount or damage is largely unknown. Here we have measured DNA BER activities in lysates of mitochondria isolated from human 143B TK osteosarcoma cells that had been depleted of mtDNA (ρ0) or not (wt). Despite the total absence of mtDNA in the ρ0 cells, a complete mitochondrial BER pathway was present, as demonstrated using an in vitro assay with synthetic oligonucleotides. Measurement of individual BER protein activities in mitochondrial lysates indicated that some BER activities are insensitive to the lack of mtDNA. Uracil and 8-oxoguanine DNA glycosylase activities were relatively insensitive to the absence of mtDNA, only about 25% reduced in ρ0 relative to wt cells. Apurinic/apyrimidinic (AP) endonuclease and polymerase γ activities were more affected, 65 and 45% lower, respectively, in ρ0 mitochondria. Overall BER activity in lysates was also about 65% reduced in ρ0 mitochondria. To identify the limiting deficiencies in BER of ρ0 mitochondria we supplemented the BER assay of mitochondrial lysates with pure uracil DNA glycosylase, AP endonuclease and/or the catalytic subunit of polymerase γ. BER activity was stimulated by addition of uracil DNA glycosylase and polymerase γ. However, no addition or combination of additions stimulated BER activity to wt levels. This suggests that an unknown activity, factor or interaction important in BER is deficient in ρ0 mitochondria. While nuclear BER protein levels and activities were generally not altered in ρ0 cells, AP endonuclease activity was substantially reduced in nuclear and in whole cell extracts. This appeared to be due to reduced endogenous reactive oxygen species (ROS) production in ρ0 cells, and not a general dysfunction of ρ0 cells, as exposure of cells to ROS rapidly stimulated increases in AP endonuclease activities and APE1 protein levels.  相似文献   

7.
8.
We recently developed porphysomes as intrinsically multifunctional nanovesicles. A photosensitizer, pyropheophorbide α, was conjugated to a phospholipid and then self-assembled to liposome-like spherical vesicles. Due to the extremely high density of porphyrin in the porphyrin-lipid bilayer, porphysomes generated large extinction coefficients, structure-dependent fluorescence self-quenching, and excellent photothermal efficacy. In our formulation, porphysomes were synthesized using high pressure extrusion, and displayed a mean particle size around 120 nm. Twenty-four hr post-intravenous injection of porphysomes, the local temperature of the tumor increased from 30 °C to 62 °C rapidly upon one minute exposure of 750 mW (1.18 W/cm2), 671 nm laser irradiation. Following the complete thermal ablation of the tumor, eschars formed and healed within 2 weeks, while in the control groups the tumors continued to grow and all reached the defined end point within 3 weeks. These data show how porphysomes can be used as potent photothermal therapy (PTT) agents.  相似文献   

9.
10.
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) lead to significant cardiovascular morbidity and mortality worldwide. Mutations in the genes encoding the sarcomere, the force-generating unit in the cardiomyocyte, cause familial forms of both HCM and DCM. This study examines two HCM-causing (I79N, E163K) and two DCM-causing (R141W, R173W) mutations in the troponin T subunit of the troponin complex using human β-cardiac myosin. Unlike earlier reports using various myosin constructs, we found that none of these mutations affect the maximal sliding velocities or maximal Ca2+-activated ADP release rates involving the thin filament human β-cardiac myosin complex. Changes in Ca2+ sensitivity using the human myosin isoform do, however, mimic changes seen previously with non-human myosin isoforms. Transient kinetic measurements show that these mutations alter the kinetics of Ca2+ induced conformational changes in the regulatory thin filament proteins. These changes in calcium sensitivity are independent of active, cycling human β-cardiac myosin.  相似文献   

11.
Devil facial tumor disease (DFTD) is a transmissible cancer affecting Tasmanian devils Sarcophilus harrisii. The disease has caused severe population declines and is associated with demographic and behavioral changes, including earlier breeding, younger age structures, and reduced dispersal and social interactions. Devils are generally solitary, but social encounters are commonplace when feeding upon large carcasses. DFTD tumors can disfigure the jaw and mouth and so diseased individuals might alter their diets to enable ingestion of alternative foods, to avoid conspecific interactions, or to reduce competition. Using stable isotope analysis (δ13C and δ15N) of whiskers, we tested whether DFTD progression, measured as tumor volume, affected the isotope ratios and isotopic niches of 94 infected Tasmanian devils from six sites in Tasmania, comprising four eucalypt plantations, an area of smallholdings and a national park. Then, using tissue from 10 devils sampled before and after detection of tumors and 8 devils where no tumors were detected, we examined whether mean and standard deviation of δ13C and δ15N of the same individuals changed between healthy and diseased states. δ13C and δ15N values were generally not related to tumor volume in infected devils, though at one site, Freycinet National Park, δ15N values increased significantly as tumor volume increased. Infection with DFTD was not associated with significant changes in the mean or standard deviation of δ13C and δ15N values in individual devils sampled before and after detection of tumors. Our analysis suggests that devils tend to maintain their isotopic niche in the face of DFTD infection and progression, except where ecological conditions facilitate a shift in diets and feeding behaviors, demonstrating that ecological context, alongside disease severity, can modulate the behavioral responses of Tasmanian devils to DFTD.  相似文献   

12.
Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K+ and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K+ clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K+. As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K+, α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K+.  相似文献   

13.
14.
Rv2466c is a key oxidoreductase that mediates the reductive activation of TP053, a thienopyrimidine derivative that kills replicating and non-replicating Mycobacterium tuberculosis, but whose mode of action remains enigmatic. Rv2466c is a homodimer in which each subunit displays a modular architecture comprising a canonical thioredoxin-fold with a Cys19-Pro20-Trp21-Cys22 motif, and an insertion consisting of a four α-helical bundle and a short α-helical hairpin. Strong evidence is provided for dramatic conformational changes during the Rv2466c redox cycle, which are essential for TP053 activity. Strikingly, a new crystal structure of the reduced form of Rv2466c revealed the binding of a C-terminal extension in α-helical conformation to a pocket next to the active site cysteine pair at the interface between the thioredoxin domain and the helical insertion domain. The ab initio low-resolution envelopes obtained from small angle x-ray scattering showed that the fully reduced form of Rv2466c adopts a “closed” compact conformation in solution, similar to that observed in the crystal structure. In contrast, the oxidized form of Rv2466c displays an “open” conformation, where tertiary structural changes in the α-helical subdomain suffice to account for the observed conformational transitions. Altogether our structural, biochemical, and biophysical data strongly support a model in which the formation of the catalytic disulfide bond upon TP053 reduction triggers local structural changes that open the substrate binding site of Rv2466c allowing the release of the activated, reduced form of TP053. Our studies suggest that similar structural changes might have a functional role in other members of the thioredoxin-fold superfamily.  相似文献   

15.
A requisite step in reovirus infection of the murine intestine is proteolysis of outer-capsid proteins to yield infectious subvirion particles (ISVPs). When converted to ISVPs by intestinal proteases, virions of reovirus strain type 3 Dearing (T3D) lose 90% of their original infectivity due to cleavage of viral attachment protein ς1. In an analysis of eight field isolate strains of type 3 reovirus, we identified one additional strain, type 3 clone 31 (T3C31), that loses infectivity and undergoes ς1 cleavage upon conversion of virions to ISVPs. We examined the ς1 deduced amino acid sequences of T3D and the eight field isolate strains for a correlation between sequence variability and ς1 cleavage. The ς1 proteins of T3D and T3C31 contain a threonine at amino acid position 249, whereas an isoleucine occurs at this position in the ς1 proteins of the remaining strains. Thr249 occupies the d position of a heptad repeat motif predicted to stabilize ς1 oligomers through α-helical coiled-coil interactions. This region of sequence comprises a portion of the fibrous tail domain of ς1 known as the neck. Substitution of Thr249 with isoleucine or leucine resulted in resistance to cleavage by trypsin, whereas replacement with asparagine did not affect cleavage susceptibility. These results demonstrate that amino acid position 249 is an independent determinant of T3D ς1 cleavage susceptibility and that an intact heptad repeat is required to confer cleavage resistance. We performed amino-terminal sequence analysis on the ς1 cleavage product released during trypsin treatment of T3D virions to generate ISVPs and found that trypsin cleaves ς1 after Arg245. Thus, the sequence polymorphism at position 249 controls cleavage at a nearby site in the neck region. The relevance of these results to reovirus infection in vivo was assessed by treating virions with the contents of a murine intestinal wash under conditions that result in generation of ISVPs. The pattern of ς1 cleavage susceptibility generated by using purified protease was reproduced in assays using the intestinal wash. These results provide a mechanistic explanation for ς1 cleavage during exposure of virions to intestinal proteases and may account for certain strain-dependent patterns of reovirus pathogenesis.  相似文献   

16.
The reflection coefficient method for describing volume and solute fluxes through membranes is generalized to take into account the nonideality of the solutions bathing the membrane and/or multicomponent systems. The reflection coefficient of the impermeable species in these systems is less than unity by a coefficient γ. The reflection coefficient obtained solely from the volume flow equation, σv, will always be less than the reflection coefficient obtained from the solute flow equation, σ8v. These two coefficients are related by σ8v = σv + γ.  相似文献   

17.
L-type calcium currents (ICa) are influenced by changes in extracellular chloride, but sites of anion effects have not been identified. Our experiments showed that CaV1.2 currents expressed in HEK293 cells are strongly inhibited by replacing extracellular chloride with gluconate or perchlorate. Variance-mean analysis of ICa and cell-attached patch single channel recordings indicate that gluconate-induced inhibition is due to intracellular anion effects on Ca2+ channel open probability, not conductance. Inhibition of CaV1.2 currents produced by replacing chloride with gluconate was reduced from ∼75%–80% to ∼50% by omitting β subunits but unaffected by omitting α2δ subunits. Similarly, gluconate inhibition was reduced to ∼50% by deleting an α1 subunit N-terminal region of 15 residues critical for β subunit interactions regulating open probability. Omitting β subunits with this mutant α1 subunit did not further diminish inhibition. Gluconate inhibition was unchanged with expression of different β subunits. Truncating the C terminus at AA1665 reduced gluconate inhibition from ∼75%–80% to ∼50% whereas truncating it at AA1700 had no effect. Neutralizing arginines at AA1696 and 1697 by replacement with glutamines reduced gluconate inhibition to ∼60% indicating these residues are particularly important for anion effects. Expressing CaV1.2 channels that lacked both N and C termini reduced gluconate inhibition to ∼25% consistent with additive interactions between the two tail regions. Our results suggest that modest changes in intracellular anion concentration can produce significant effects on CaV1.2 currents mediated by changes in channel open probability involving β subunit interactions with the N terminus and a short C terminal region.  相似文献   

18.
Intramembrane proteases regulate diverse processes by cleaving substrates within a transmembrane segment or near the membrane surface. Bacillus subtilis SpoIVFB is an intramembrane metalloprotease that cleaves Pro-σK during sporulation. To elucidate features of Pro-σK important for cleavage by SpoIVFB, coexpression of the two proteins in Escherichia coli was used along with cell fractionation. In the absence of SpoIVFB, a portion of the Pro-σK was peripherally membrane associated. This portion was not observed in the presence of SpoIVFB, suggesting that it serves as the substrate. Deletion of Pro-σK residues 2 to 8, addition of residues at its N terminus, or certain single-residue substitutions near the cleavage site impaired cleavage. Certain multiresidue substitutions near the cleavage site changed the position of cleavage, revealing preferences for a small residue preceding the cleavage site N-terminally (i.e., at the P1 position) and a hydrophobic residue at the second position following the cleavage site C-terminally (i.e., P2′). These features appear to be conserved among Pro-σK orthologs. SpoIVFB did not tolerate an aromatic residue at P1 or P2′ of Pro-σK. A Lys residue at P3′ of Pro-σK could not be replaced with Ala unless a Lys was provided farther C-terminally (e.g., at P9′). α-Helix-destabilizing residues near the cleavage site were not crucial for SpoIVFB to cleave Pro-σK. The preferences and tolerances of SpoIVFB are somewhat different from those of other intramembrane metalloproteases, perhaps reflecting differences in the interaction of the substrate with the membrane and the enzyme.  相似文献   

19.
20.
Mutations in otoferlin, a C2 domain-containing ferlin family protein, cause non-syndromic hearing loss in humans (DFNB9 deafness). Furthermore, transmitter secretion of cochlear inner hair cells is compromised in mice lacking otoferlin. In the present study, we show that the C2F domain of otoferlin directly binds calcium (KD = 267 μm) with diminished binding in a pachanga (D1767G) C2F mouse mutation. Calcium was found to differentially regulate binding of otoferlin C2 domains to target SNARE (t-SNARE) proteins and phospholipids. C2D–F domains interact with the syntaxin-1 t-SNARE motif with maximum binding within the range of 20–50 μm Ca2+. At 20 μm Ca2+, the dissociation rate was substantially lower, indicating increased binding (KD = ∼10−9) compared with 0 μm Ca2+ (KD = ∼10−8), suggesting a calcium-mediated stabilization of the C2 domain·t-SNARE complex. C2A and C2B interactions with t-SNAREs were insensitive to calcium. The C2F domain directly binds the t-SNARE SNAP-25 maximally at 100 μm and with reduction at 0 μm Ca2+, a pattern repeated for C2F domain interactions with phosphatidylinositol 4,5-bisphosphate. In contrast, C2F did not bind the vesicle SNARE protein synaptobrevin-1 (VAMP-1). Moreover, an antibody targeting otoferlin immunoprecipitated syntaxin-1 and SNAP-25 but not synaptobrevin-1. As opposed to an increase in binding with increased calcium, interactions between otoferlin C2F domain and intramolecular C2 domains occurred in the absence of calcium, consistent with intra-C2 domain interactions forming a “closed” tertiary structure at low calcium that “opens” as calcium increases. These results suggest a direct role for otoferlin in exocytosis and modulation of calcium-dependent membrane fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号