首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disequilibrium Pattern Analysis. I. Theory   总被引:5,自引:3,他引:2       下载免费PDF全文
We have developed a method, disequilibrium pattern analysis, for examining the disequilibrium distribution of the entire array of two locus multiallelic haplotypes in a population. It is shown that a selected haplotype will produce a distinct pattern of linkage disequilibrium values for all generations while the selection is acting. This pattern will also presumably be maintained for many generations after the selection event, until the disequilibrium pattern is eventually broken down by genetic drift and recombination. Related haplotypes, sharing an allele with a selected haplotype, assume a value of linkage disequilibrium proportional to the frequency of the unshared allele and have a single negative value of the normalized linkage disequilibrium. The analysis assumes zero linkage disequilibrium for all allelic combinations initially. The same basic results continue to apply if the selection involves a new mutant, the occurrence of which creates linkage disequilibrium for some haplotypes. The disequilibrium pattern predicted under selection is robust with respect to the influence of migration and random genetic drift. This method is applicable to population data having linked polymorphic loci including that determined from protein or DNA sequencing.  相似文献   

2.
As large-scale sequencing efforts turn from single genome sequencing to polymorphism discovery, single nucleotide polymorphisms (SNPs) are becoming an increasingly important class of population genetic data. But because of the ascertainment biases introduced by many methods of SNP discovery, most SNP data cannot be analyzed using classical population genetic methods. Statistical methods must instead be developed that can explicitly take into account each method of SNP discovery. Here we review some of the current methods for analyzing SNPs and derive sampling distributions for single SNPs and pairs of SNPs for some common SNP discovery schemes. We also show that the ascertainment scheme has a large effect on the estimation of linkage disequilibrium and recombination, and describe some methods of correcting for ascertainment biases when estimating recombination rates from SNP data.  相似文献   

3.
Z Sun  W Tian 《PloS one》2012,7(8):e42887
The third-generation of sequencing technologies produces sequence reads of 1000 bp or more that may contain high polymorphism information. However, most currently available sequence analysis tools are developed specifically for analyzing short sequence reads. While the traditional Smith-Waterman (SW) algorithm can be used to map long sequence reads, its naive implementation is computationally infeasible. We have developed a new Sequence mapping and Analyzing Program (SAP) that implements a modified version of SW to speed up the alignment process. In benchmarks with simulated and real exon sequencing data and a real E. coli genome sequence data generated by the third-generation sequencing technologies, SAP outperforms currently available tools for mapping short and long sequence reads in both speed and proportion of captured reads. In addition, it achieves high accuracy in detecting SNPs and InDels in the simulated data. SAP is available at https://github.com/davidsun/SAP.  相似文献   

4.
Optimal integration of next-generation sequencing into mainstream research requires re-evaluation of how problems can be reasonably overcome and what questions can be asked. One potential application is the rapid acquisition of genomic information to identify microsatellite loci for evolutionary, population genetic and chromosome linkage mapping research on non-model and not previously sequenced organisms. Here, we report on results using high-throughput sequencing to obtain a large number of microsatellite loci from the venomous snake Agkistrodon contortrix, the copperhead. We used the 454 Genome Sequencer FLX next-generation sequencing platform to sample randomly ∼27 Mbp (128 773 reads) of the copperhead genome, thus sampling about 2% of the genome of this species. We identified microsatellite loci in 11.3% of all reads obtained, with 14 612 microsatellite loci identified in total, 4564 of which had flanking sequences suitable for polymerase chain reaction primer design. The random sequencing-based approach to identify microsatellites was rapid, cost-effective and identified thousands of useful microsatellite loci in a previously unstudied species.  相似文献   

5.
Recent empirical data have enabled a more informed debate over the extent of clonality in Plasmodium falciparum populations. Oocyst heterozygosity data reveal that the mating structure of malaria populations varies according to the transmission intensity. This finding provides a more detailed picture of the malaria mating structure than previous conclusions, which were based on indirect measures of population mating structure, ie. linkage disequilibrium analyses. In this article, Ric Paul and Karen Day discuss aspects of the genetic structure of malaria populations as evidenced by oocyst heterozygosity and linkage disequilibrium data. They address the difficulties of performing genetic analyses of malaria parasite population structure inherent in parasite sampling, why two identical parasites are rarely observed in the field and how features of the epidemiology determine parasite population structure.  相似文献   

6.
Richard R. Hudson 《Genetics》1985,109(3):611-631
The sampling distributions of several statistics that measure the association of alleles on gametes (linkage disequilibrium) are estimated under a two-locus neutral infinite allele model using an efficient Monte Carlo method. An often used approximation for the mean squared linkage disequilibrium is shown to be inaccurate unless the proper statistical conditioning is used. The joint distribution of linkage disequilibrium and the allele frequencies in the sample is studied. This estimated joint distribution is sufficient for obtaining an approximate maximum likelihood estimate of C = 4Nc, where N is the population size and c is the recombination rate. It has been suggested that observations of high linkage disequilibrium might be a good basis for rejecting a neutral model in favor of a model in which natural selection maintains genetic variation. It is found that a single sample of chromosomes, examined at two loci cannot provide sufficient information for such a test if C less than 10, because with C this small, very high levels of linkage disequilibrium are not unexpected under the neutral model. In samples of size 50, it is found that, even when C is as large as 50, the distribution of linkage disequilibrium conditional on the allele frequencies is substantially different from the distribution when there is no linkage between the loci. When conditioned on the number of alleles at each locus in the sample, all of the sample statistics examined are nearly independent of theta = 4N mu, where mu is the neutral mutation rate.  相似文献   

7.
Pignatelli M  Moya A 《PloS one》2011,6(5):e19984
A frequent step in metagenomic data analysis comprises the assembly of the sequenced reads. Many assembly tools have been published in the last years targeting data coming from next-generation sequencing (NGS) technologies but these assemblers have not been designed for or tested in multi-genome scenarios that characterize metagenomic studies. Here we provide a critical assessment of current de novo short reads assembly tools in multi-genome scenarios using complex simulated metagenomic data. With this approach we tested the fidelity of different assemblers in metagenomic studies demonstrating that even under the simplest compositions the number of chimeric contigs involving different species is noticeable. We further showed that the assembly process reduces the accuracy of the functional classification of the metagenomic data and that these errors can be overcome raising the coverage of the studied metagenome. The results presented here highlight the particular difficulties that de novo genome assemblers face in multi-genome scenarios demonstrating that these difficulties, that often compromise the functional classification of the analyzed data, can be overcome with a high sequencing effort.  相似文献   

8.
The allelic association or linkage disequilibrium between two loci is a parameter of fundamental interest in modern population genetics for evolutionary inference and association mapping studies. Among the many measures available, the optimal measure of allelic association rho presents a strong evolutionary theory basis and is modeled on the physical distance along the chromosome with the Malécot equation for isolation by distance. Moreover, rho is equal to the absolute value of D', the standardized measure of gametic disequilibrium. We studied here the statistical properties of the rho sample estimator. We derived its asymptotic probability distribution and showed that it is neither asymptotically normal nor unbiased when rho=0 or when allelic frequencies are equal at both loci, in contrast to previous claims. This asymptotic study leads to propose a new test for absence of linkage disequilibrium. We compared it to Pearson's Chi2 test for independence in a contingency table and showed by simulations that the range in power of these two tests depends on the sign of D'. The new test outperformed slightly the Chi2 test, when D', polarized with respect to major alleles, is negative. Finally, we derived the asymptotic bias and information of the rho estimator that are due to the experimental sampling and showed by simulation that its bias is large in small samples. The consequences of these findings on applications using the rho measure are then discussed in particular for constructing LD unit maps, and call for a revised statistical treatment.  相似文献   

9.
Pérez-Enciso M 《Genetics》2003,163(4):1497-1510
We present a Bayesian method that combines linkage and linkage disequilibrium (LDL) information for quantitative trait locus (QTL) mapping. This method uses jointly all marker information (haplotypes) and all available pedigree information; i.e., it is not restricted to any specific experimental design and it is not required that phases are known. Infinitesimal genetic effects or environmental noise ("fixed") effects can equally be fitted. A diallelic QTL is assumed and both additive and dominant effects can be estimated. We have implemented a combined Gibbs/Metropolis-Hastings sampling to obtain the marginal posterior distributions of the parameters of interest. We have also implemented a Bayesian variant of usual disequilibrium measures like D' and r(2) between QTL and markers. We illustrate the method with simulated data in "simple" (two-generation full-sib families) and "complex" (four-generation) pedigrees. We compared the estimates with and without using linkage disequilibrium information. In general, using LDL resulted in estimates of QTL position that were much better than linkage-only estimates when there was complete disequilibrium between the mutant QTL allele and the marker. This advantage, however, decreased when the association was only partial. In all cases, additive and dominant effects were estimated accurately either with or without disequilibrium information.  相似文献   

10.
11.
Jack da Silva 《Genetics》2009,182(1):265-275
The frequently reported amino acid covariation of the highly polymorphic human immunodeficiency virus type 1 (HIV-1) exterior envelope glycoprotein V3 region has been assumed to reflect fitness epistasis between residues. However, nonrandom association of amino acids, or linkage disequilibrium, has many possible causes, including population subdivision. If the amino acids at a set of sequence sites differ in frequencies between subpopulations, then analysis of the whole population may reveal linkage disequilibrium even if it does not exist in any subpopulation. HIV-1 has a complex population structure, and the effects of this structure on linkage disequilibrium were investigated by estimating within- and among-subpopulation components of variance in linkage disequilibrium. The amino acid covariation previously reported is explained by differences in amino acid frequencies among virus subpopulations in different patients and by nonsystematic disequilibrium among patients. Disequilibrium within patients appears to be entirely due to differences in amino acid frequencies among sampling time points and among chemokine coreceptor usage phenotypes of virus particles, but not source tissues. Positive selection explains differences in allele frequencies among time points and phenotypes, indicating that these differences are adaptive rather than due to genetic drift. However, the absence of a correlation between linkage disequilibrium and phenotype suggests that fitness epistasis is an unlikely cause of disequilibrium. Indeed, when population structure is removed by analyzing sequences from a single time point and phenotype, no disequilibrium is detectable within patients. These results caution against interpreting amino acid covariation and coevolution as evidence for fitness epistasis.  相似文献   

12.
Jinliang Wang 《Molecular ecology》2016,25(19):4692-4711
In molecular ecology and conservation genetics studies, the important parameter of effective population size (Ne) is increasingly estimated from a single sample of individuals taken at random from a population and genotyped at a number of marker loci. Several estimators are developed, based on the information of linkage disequilibrium (LD), heterozygote excess (HE), molecular coancestry (MC) and sibship frequency (SF) in marker data. The most popular is the LD estimator, because it is more accurate than HE and MC estimators and is simpler to calculate than SF estimator. However, little is known about the accuracy of LD estimator relative to that of SF and about the robustness of all single‐sample estimators when some simplifying assumptions (e.g. random mating, no linkage, no genotyping errors) are violated. This study fills the gaps and uses extensive simulations to compare the biases and accuracies of the four estimators for different population properties (e.g. bottlenecks, nonrandom mating, haplodiploid), marker properties (e.g. linkage, polymorphisms) and sample properties (e.g. numbers of individuals and markers) and to compare the robustness of the four estimators when marker data are imperfect (with allelic dropouts). Extensive simulations show that SF estimator is more accurate, has a much wider application scope (e.g. suitable to nonrandom mating such as selfing, haplodiploid species, dominant markers) and is more robust (e.g. to the presence of linkage and genotyping errors of markers) than the other estimators. An empirical data set from a Yellowstone grizzly bear population was analysed to demonstrate the use of the SF estimator in practice.  相似文献   

13.
Effective population size (N e) is a central concept in evolutionary biology and conservation genetics. It predicts rates of loss of neutral genetic variation, fixation of deleterious and favourable alleles, and the increase of inbreeding experienced by a population. A method exists for the estimation of N e from the observed linkage disequilibrium between unlinked loci in a population sample. While an increasing number of studies have applied this method in natural and managed populations, its reliability has not yet been evaluated. We developed a computer program to calculate this estimator of N e using the most widely used linkage disequilibrium algorithm and used simulations to show that this estimator is strongly biased when the sample size is small (<‰100) and below the true N e. This is probably due to the linkage disequilibrium generated by the sampling process itself and the inadequate correction for this phenomenon in the method. Results suggest that N e estimates derived using this method should be regarded with caution in many cases. To improve the method’s reliability and usefulness we propose a way to determine whether a given sample size exceeds the population N e and can therefore be used for the computation of an unbiased estimate.  相似文献   

14.
ABSTRACT: BACKGROUND: With the advent of next-generation sequencing there is an increased demand for tools to pre-process and handle the vast amounts of data generated. One recurring problem is adapter contamination in the reads, i.e. the partial or complete sequencing of adapter sequences. These adapter sequences have to be removed as they can hinder correct mapping of the reads and influence SNP calling and other downstream analyses. FINDINGS: We present a tool called AdapterRemoval which is able to pre-process both single and paired-end data. The program locates and removes adapter residues from the reads, it is able to combine paired reads if they overlap, and it can optionally trim low-quality nucleotides. Furthermore, it can look for adapter sequence in both the 5' and 3' ends of the reads. This is a flexible method that can be tuned to accommodate different experimental settings and sequencing platforms producing FASTQ files. AdapterRemoval is shown to be good at trimming adapters from both single-end and paired-end data. CONCLUSIONS: AdapterRemoval is a comprehensive tool for analyzing next-generation sequencing data. It exhibits good performance both in terms of sensitivity and specificity. AdapterRemoval has already been used in various large projects and it is possible to extend it further to accommodate application-specific biases in the data.  相似文献   

15.
With the widespread availability of SNP genotype data, there is great interest in analyzing pedigree haplotype data. Intermarker linkage disequilibrium for microsatellite markers is usually low due to their physical distance; however, for dense maps of SNP markers, there can be strong linkage disequilibrium between marker loci. Linkage analysis (parametric and nonparametric) and family-based association studies are currently being carried out using dense maps of SNP marker loci. Monte Carlo methods are often used for both linkage and association studies; however, to date there are no programs available which can generate haplotype and/or genotype data consisting of a large number of loci for pedigree structures. SimPed is a program that quickly generates haplotype and/or genotype data for pedigrees of virtually any size and complexity. Marker data either in linkage disequilibrium or equilibrium can be generated for greater than 20,000 diallelic or multiallelic marker loci. Haplotypes and/or genotypes are generated for pedigree structures using specified genetic map distances and haplotype and/or allele frequencies. The simulated data generated by SimPed is useful for a variety of purposes, including evaluating methods that estimate haplotype frequencies for pedigree data, evaluating type I error due to intermarker linkage disequilibrium and estimating empirical p values for linkage and family-based association studies.  相似文献   

16.
Identification of allelic variants associated with complex traits provides molecular genetic information associated with variability upon which both artificial and natural selections are based. Family-based association mapping (FBAM) takes advantage of linkage disequilibrium among segregating progeny within crosses and among parents to provide greater power than association mapping and greater resolution than linkage mapping. Herein, we discuss the potential adaption of human family-based association tests and quantitative transmission disequilibrium tests for use in crop species. The rapid technological advancement of next generation sequencing will enable sequencing of all parents in a planned crossing design, with subsequent imputation of genotypes for all segregating progeny. These technical advancements are easily adapted to mating designs routinely used by plant breeders. Thus, FBAM has the potential to be widely adopted for discovering alleles, common and rare, underlying complex traits in crop species.  相似文献   

17.
New methods for analyzing sequence polymorphism data have uncovered some striking patterns of linkage disequilibrium in both humans and fruitflies. These methods have revealed examples where the observed amount of linkage disequilibrium is either much more or much less than expected, and have led to advances in our understanding of the forces that affect naturally occurring genetic variation. With the recent explosion of sequence polymorphism data, the prospects for further progress from these methods are quite promising.  相似文献   

18.
Genetic polymorphisms, particularly single nucleotide polymorphisms (SNPs), have been widely used to advance quantitative, functional and evolutionary genomics. Ideally, all genetic variants among individuals should be discovered when next generation sequencing (NGS) technologies and platforms are used for whole genome sequencing or resequencing. In order to improve the cost-effectiveness of the process, however, the research community has mainly focused on developing genome-wide sampling sequencing (GWSS) methods, a collection of reduced genome complexity sequencing, reduced genome representation sequencing and selective genome target sequencing. Here we review the major steps involved in library preparation, the types of adapters used for ligation and the primers designed for amplification of ligated products for sequencing. Unfortunately, currently available GWSS methods have their drawbacks, such as inconsistency in the number of reads per sample library, the number of sites/targets per individual, and the number of reads per site/target, all of which result in missing data. Suggestions are proposed here to improve library construction, genotype calling accuracy, genome-wide marker density and read mapping rate. In brief, optimized GWSS library preparation should generate a unique set of target sites with dense distribution along chromosomes and even coverage per site across all individuals.  相似文献   

19.
20.
ldne is a program with a Visual Basic interface that implements a recently developed bias correction for estimates of effective population size (N(e) ) based on linkage disequilibrium data. The program reads genotypic data in standard formats and can accommodate an arbitrary number of samples, individuals, loci, and alleles, as well as two mating systems: random and lifetime monogamy. ldne calculates separate estimates using different criteria for excluding rare alleles, which facilitates evaluation of data for highly polymorphic markers such as microsatellites. The program also introduces a jackknife method for obtaining confidence intervals that appears to perform better than parametric methods currently in use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号