首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
根据中国药典2005年版三部和WHO"人用大流行流感疫苗制备的指导原则"相关要求,以及各企业的申报规程,对全国10家甲型H1N1流感疫苗生产企业工作毒种A/Californ ia/07/2009 NYMC X-179A进行毒种检定,结果均符合中国药典2005年版三部和各企业申报规程的要求。  相似文献   

2.
流感病毒感染可引起急性呼吸道传染病,严重危害人类的健康与生命。疫苗免疫是防控流感的重要手段。目前广泛应用的传统灭活疫苗和减毒活疫苗,在预防流感中发挥了重要作用,但存在通用性差和免疫效率低等不足。研制更为安全高效特别是能针对多种流感亚型的新型广谱疫苗成为当前流感疫苗研究的热点。随着结构生物学和反向遗传生物学等新技术的迅速发展,一些新策略不断应用于新型流感疫苗的研究,显示出良好的应用前景。  相似文献   

3.
Vaccination with the non-adjuvanted split-virion A/California/7/2009 influenza vaccine (pandemic H1N1 2009 vaccine) began in October 2009 in Japan. The present study was designed to assess the effect of prior vaccination with a seasonal trivalent influenza vaccine on the antibody response to the pandemic H1N1 2009 vaccine in healthy adult volunteers. One hundred and seventeen participants aged 22 to 62 were randomly assigned to two study groups. In Group 1 (the priming group), participants were first vaccinated with the seasonal trivalent influenza vaccine followed by two separate one-dose vaccinations of the pandemic H1N1 2009 vaccine, whereas in Group 2 (the non-priming group), the participants were first vaccinated with one dose of the pandemic H1N1 2009 vaccine, followed by simultaneous vaccination of the seasonal trivalent vaccine and the second dose of the pandemic H1N1 2009 vaccine. The participants in Group 2 had a seroprotection rate (SPR) of 79.7% and a seroconversion rate (SCR) of 79.7% in the hemagglutination-inhibition test after the first dose of the pandemic H1N1 2009 vaccine, indicating that the pandemic H1N1 2009 vaccine is sufficiently immunogenic. On the other hand, the participants of Group 1 had a significantly weaker antibody response, with a SPR of 60.8% and a SCR of 58.5%. These results indicate that prior vaccination with the seasonal trivalent influenza vaccine inhibits the antibody response to the pandemic H1N1 2009 vaccine. Therefore, the pandemic H1N1 2009 vaccine should be administered prior to vaccination with the seasonal trivalent influenza vaccine.  相似文献   

4.
目的 评价季节性流感裂解疫苗对流感病毒H7N9的免疫保护效力.方法 用我国2012~2013年度季节性流感裂解疫苗,以腹腔注射方式免疫BALB/c小鼠,并设PBS免疫模型组,末次免疫14 d后以5 LD50 A/Anhui/1(H7N9)进行攻试验.感染后观察记录小鼠临床表现,体重变化,并分别于第2天和第4天每组处死3只小鼠,取肺组织和鼻甲骨测病毒滴度和载量.结果 感染后疫苗与模型组小鼠体重下降明显,疫苗组存活率为10%,模型组全部死亡.感染后第4天疫苗组鼻甲骨滴度显著低于模型组.血凝抑制试验及中和实验表明免疫小鼠血清无中和H7N9病毒抗体.结论 季节性流感疫苗在小鼠中对于H7N9流感病毒感染无明显保护作用.  相似文献   

5.
Tachykinins are a family of structurally related peptides, including substance P (SP), hemokinin-1 (HK-1), neurokinin A (NKA), and neurokinin B. SP and NKA have been shown to modulate hematopoiesis and rat/mouse HK-1 has been found to be involved in the survival and differentiation of mouse B-cells. This study was designed to assess the expression of tachykinins with a focus on human HK-1 (hHK-1) in human B lymphocytes and the role of these peptides in cell differentiation, apoptosis and proliferation. Expression of tachykinin and tachykinin receptor mRNA was determined quantitatively in human B lymphoproliferative malignancies and compared to normal B-cells. Expression of hHK-1 and NK1 receptor, but not SP, was detected in human B-lymphocytes, and was up-regulated in B-lymphocytes from chronic lymphocytic leukemia and non-Hodgkin's lymphoma, while it was down-regulated in acute lymphoblastic leukemia. Moreover, hHK-1, in contrast to SP, was able to induce proliferation of human pre-B lymphocytes through a NK1 receptor-independent mechanism. These data suggest a role for hHK-1 in normal and pathological B lymphopoiesis, and open the door to a better understanding of the physiopathological mechanisms leading to lymphoproliferative malignancies.  相似文献   

6.
Affinity chromatography using sulfated, spherical cellulose beads (Cellufine Sulfate) was assessed for purification of influenza A and influenza B viruses. Recovery rates of viruses eluted from the beads were high for all tested virus strains. This method was also useful for removing chicken egg-derived impurities from allantoic fluids containing influenza viruses; the hemagglutination activity per amount of protein in the eluted sample was significantly higher than that in the applied sample. These results suggest that use of Cellufine Sulfate is a practical method for primary purification of influenza viruses in the process of influenza vaccine production.  相似文献   

7.
Dengue, a mosquito-borne disease, is caused by four known dengue serotypes. This infection causes a range of symptoms from a mild fever to a sever homorganic fever and death. It is a serious public health problem in subtropical and tropical countries. There is no specific vaccine currently available for clinical use and study on this issue is ongoing. In this study, bioinformatics approaches were used to predict antigenic, immunogenic, non-allergenic, and conserved B and T-cell epitopes as promising targets to design an effective peptide-based vaccine against dengue virus. Molecular docking analysis indicated the deep binding of the identified epitopes in the binding groove of the most popular human MHC I allele (human leukocyte antigens [HLA] A*0201). The final vaccine construct was created by conjugating the B and T-cell identified epitopes using proper linkers and adding an appropriate adjuvant at the N-terminal. The characteristics of the new subunit vaccine demonstrated that the epitope-based vaccine was antigenic, non-toxic, stable, and soluble. Other physicochemical properties of the new designed construct including isoelectric point value, aliphatic index, and grand average of hydropathicity were biologically considerable. Molecular docking of the engineered vaccine with Toll-like receptor 2 (TLR2) model revealed the hydrophobic interaction between the adjuvant and the ligand binding regions in the hydrophobic channel of TLR2. The study results indicated the high potential capability of the new multi-epitope vaccine to induce cellular and humoral immune responses against the dengue virus. Further experimental tests are required to investigate the immune protection capacity of the new vaccine construct in animal models.

Communicated by Ramaswamy H. Sarma  相似文献   


8.
Although most influenza vaccines are produced in eggs, new types of vaccines must be developed. In this study, the immunogenicity and safety of a baculovirus‐expressed hemagglutinin (HA) of H1N1 influenza virus (Korea/01/2009; designated “HA‐Bac‐K”) was compared with those of a commercially available baculovirus‐expressed HA (designated “HA‐Bac‐C”) and an Escherichia coli‐expressed HA (designated “HA‐E. Coli‐K”). HA‐Bac‐K succeeded in inducing hemagglutination inhibition and neutralization antibodies in mouse and ferret models. The different immunogenicities observed may be attributable to the different expression systems and purification protocols used. Our work suggests that HA expressed in a baculovirus system is an effective and safe candidate influenza vaccine.  相似文献   

9.
Influenza A viruses (IAV) are highly contagious pathogens causing dreadful losses to human and animal, around the globe. IAVs first interact with the host through epithelial cells, and the viral RNA containing a 5′-triphosphate group is thought to be the critical trigger for activation of effective innate immunity via pattern recognition receptors-dependent signaling pathways. These induced immune responses establish the antiviral state of the host for effective suppression of viral replication and enhancing viral clearance. However, IAVs have evolved a variety of mechanisms by which they can invade host cells, circumvent the host immune responses, and use the machineries of host cells to synthesize and transport their own components, which help them to establish a successful infection and replication. In this review, we will highlight the molecular mechanisms of how IAV infection stimulates the host innate immune system and strategies by which IAV evades host responses.  相似文献   

10.
禽流感病毒血凝素疫苗在转基因马铃薯中的表达   总被引:20,自引:0,他引:20  
利用转基因马铃薯表达禽流感病毒血凝素疫苗,将含有禽流感病毒血凝素序列的表达载体导入农杆菌,再感染马铃薯的幼茎外植体。转化植株的再生及温室栽培,Western blot分析表明,83%的转化植株在其块茎组织中表达了重组血凝素,表达量占总蛋白量的0.03-0.04%,结果显示用马铃薯生产口服禽流感疫苗是可行的。  相似文献   

11.
The nucleoprotein (NP) of influenza A virus plays a crucial role in virus replication, infectivity, and host adaptation. As a major component of the viral ribonucleoprotein complexes (vRNP), NP initiates vRNP shuttling between the nucleus and cytoplasm in the host cell. However, the characteristics of the nucleocytoplasmic shuttling of NP from H1N1 influenza A virus still remain unclear. In the present study, the subcellular localization and the related key residues of the H1N1 influenza virus NP were identified and evaluated. The NP of influenza virus A/WSN/33 (H1N1; WSN) displayed a more obvious nuclear accumulation than A/Anhui/1/2013 (H7N9; AH) and A/chicken/Shandong/lx1023/2007 (H9N2; SD). NP residue K4, located in NLS1, and residue F253, located in NES3, from WSN NP are not conserved in H7N9 and H9N2, which instead encode Q4 and I253, respectively. Crucially, these residues are involved in the regulation of NP nucleocytoplasmic shuttling through interactions with CRM1 and importin‐α. Moreover, residues at position 253 also play important roles in the replication of the virus, resulting in an increase in vRNP polymerase activity and an alteration of the cell tropism and pathogenicity in mice. The present data revealed a pivotal role of the Q4 and I253 residues of NP from H7N9 in enhancing the cytoplasmic accumulation of NP and vRNP activity compared to the K4 and F253 residues in WSN‐NP. In addition, an F253I substitution in the NP of WSN altered the survival ratio of infected mice and the growth curve in infected avian‐origin cells (DF‐1). The current data indicate that the F253I mutation results in attenuated pathogenicity of the virus in mice and altered cell tropism. The present study demonstrated the dissimilarity in subcellular NP transport processes between H1N1 virus WSN and other influenza A virus strains, as well as uncovered the mechanism responsible for this difference.  相似文献   

12.
As pigs are susceptible to both human and avian influenza viruses, they have been proposed to be intermediate hosts or mixing vessels for the generation of pandemic influenza viruses through reassortment or adaptation to the mammalian host. In this study, we reported avian-like H1N1 and novel ressortant H1N2 influenza viruses from pigs in China. Homology and phylogenetic analyses showed that the H1N1 virus (A/swine/Zhejiang/1/07) was closely to avian-like H1N1 viruses and seemed to be derived from the European swine H1N1 viruses, which was for the first time reported in China; and the two H1N2 viruses (A/swine/Shanghai/1/07 and A/swine/Guangxi/13/06) were novel ressortant H1N2 influenza viruses containing genes from the classical swine (HA, NP, M and NS), human (NA and PB1) and avian (PB2 and PA) lineages, which indicted that the reassortment among human, avian, and swine influenza viruses had taken place in pigs in China and resulted in the generation of new viruses. The isolation of avian-like H1N1 influenza virus originated from the European swine H1N1 viruses, especially the emergence of two novel ressortant H1N2 influenza viruses provides further evidence that pigs serve as intermediate hosts or “mixing vessels”, and swine influenza virus surveillance in China should be given a high priority.  相似文献   

13.
Intranasally administered influenza vaccines could be more effective than injected vaccines, because intranasal vaccination can induce virus-specific immunoglobulin A (IgA) antibodies in the upper respiratory tract, which is the initial site of infection. In this study, immune responses elicited by an intranasal inactivated vaccine of influenza A(H5N1) virus were evaluated in healthy individuals naive for influenza A(H5N1) virus. Three doses of intranasal inactivated whole-virion H5 influenza vaccine induced strong neutralizing nasal IgA and serum IgG antibodies. In addition, a mucoadhesive excipient, carboxy vinyl polymer, had a notable impact on the induction of nasal IgA antibody responses but not on serum IgG antibody responses. The nasal hemagglutinin (HA)-specific IgA antibody responses clearly correlated with mucosal neutralizing antibody responses, indicating that measurement of nasal HA-specific IgA titers could be used as a surrogate for the mucosal antibody response. Furthermore, increased numbers of plasma cells and vaccine antigen-specific Th cells in the peripheral blood were observed after vaccination, suggesting that peripheral blood biomarkers may also be used to evaluate the intranasal vaccine-induced immune response. However, peripheral blood immune cell responses correlated with neutralizing antibody titers in serum samples but not in nasal wash samples. Thus, analysis of the peripheral blood immune response could be a surrogate for the systemic immune response to intranasal vaccination but not for the mucosal immune response. The current study suggests the clinical potential of intranasal inactivated vaccines against influenza A(H5N1) viruses and highlights the need to develop novel means to evaluate intranasal vaccine-induced mucosal immune responses.  相似文献   

14.
In 2013, three reassortant swine influenza viruses (SIVs)—two H1N2 and one H3N2—were isolated from symptomatic pigs in Japan; each contained genes from the pandemic A(H1N1) 2009 virus and endemic SIVs. Phylogenetic analysis revealed that the two H1N2 viruses, A/swine/Gunma/1/2013 and A/swine/Ibaraki/1/2013, were reassortants that contain genes from the following three distinct lineages: (i) H1 and nucleoprotein (NP) genes derived from a classical swine H1 HA lineage uniquely circulating among Japanese SIVs; (ii) neuraminidase (NA) genes from human‐like H1N2 swine viruses; and (iii) other genes from pandemic A(H1N1) 2009 viruses. The H3N2 virus, A/swine/Miyazaki/2/2013, comprised genes from two sources: (i) hemagglutinin (HA) and NA genes derived from human and human‐like H3N2 swine viruses and (ii) other genes from pandemic A(H1N1) 2009 viruses. Phylogenetic analysis also indicated that each of the reassortants may have arisen independently in Japanese pigs. A/swine/Miyazaki/2/2013 were found to have strong antigenic reactivities with antisera generated for some seasonal human‐lineage viruses isolated during or before 2003, whereas A/swine/Miyazaki/2/2013 reactivities with antisera against viruses isolated after 2004 were clearly weaker. In addition, antisera against some strains of seasonal human‐lineage H1 viruses did not react with either A/swine/Gunma/1/2013 or A/swine/Ibaraki/1/2013. These findings indicate that emergence and spread of these reassortant SIVs is a potential public health risk.  相似文献   

15.
《Cell host & microbe》2021,29(12):1815-1827.e6
  1. Download : Download high-res image (130KB)
  2. Download : Download full-size image
  相似文献   

16.
The cross‐reactivity of antibody to the swine‐origin pandemic influenza A (H1N1) 2009 virus induced by vaccination with a seasonal trivalent influenza vaccine was studied. Paired sera from a cohort of adult volunteers vaccinated with a trivalent seasonal influenza vaccine every year from 2006 to 2008 were collected each year and tested by hemagglutination inhibition (HI) for antibody against the pandemic influenza A (H1N1) 2009 virus. There was little increase in the geometric mean titer overall; a slight increase was detected in the sera obtained in the 2007–2008 season but not in the other two seasons. The proportion of individuals with HI antibody titers ≥ 1:40 did not change significantly from year to year. These results indicate that cross‐reactivity of the antibodies induced by a trivalent seasonal vaccine to the pandemic influenza A (H1N1) 2009 virus is marginal.  相似文献   

17.
A novel avian influenza A (H7N9) virus recently emerged in the Yangtze River delta and caused diseases, often severe, in over 130 people. This H7N9 virus appeared to infect humans with greater ease than previous avian influenza virus subtypes such as H5N1 and H9N2. While there are other potential explanations for this large number of human infections with an avian influenza virus, we investigated whether a lack of conserved T-cell epitopes between endemic H1N1 and H3N2 influenza viruses and the novel H7N9 virus contributes to this observation. Here we demonstrate that a number of T cell epitopes are conserved between endemic H1N1 and H3N2 viruses and H7N9 virus. Most of these conserved epitopes are from viral internal proteins. The extent of conservation between endemic human seasonal influenza and avian influenza H7N9 was comparable to that with the highly pathogenic avian influenza H5N1. Thus, the ease of inter-species transmission of H7N9 viruses (compared with avian H5N1 viruses) cannot be attributed to the lack of conservation of such T cell epitopes. On the contrary, our findings predict significant T-cell based cross-reactions in the human population to the novel H7N9 virus. Our findings also have implications for H7N9 virus vaccine design.  相似文献   

18.
禽流感病毒最新研究进展   总被引:7,自引:0,他引:7  
王乐  郭蓓 《生命科学》2006,18(1):35-40
本文针对2004年爆发的禽流感疫病,回顾了2004年至2005年期间禽流感病毒的研究进展。逆转录聚合酶链式反应技术为禽流感病毒的分型提供了一种快速、可靠、准确的方法。对H5N1禽流感病毒致病机制的研究发现,其强致病性在于它可以躲避人类抗病毒细胞因子的作用,NS1基因编码蛋白的92位谷氨酸在其中发挥了关键作用。由于禽流感疾病多引起结膜炎,并与病毒细胞受体的研究结果相结合,有科学家认为眼部特异性是禽流感病毒的一个总体特征。社会普遍关注禽流感疫苗的研制,人类和禽类流感A型病毒M2蛋白胞外区域的序列比对工作为疫苗研制提供了一条新的思路,依据神经氨酸酶抑制剂抑制病毒的出芽繁殖原理的疫苗正在研制过程中,而利用siRNA预防和治疗禽流感也是很有潜力的一种方法。禽流感病毒研究的另一个热点是病毒基因节段的重配问题。  相似文献   

19.
A phase III observational study evaluating a single-dose of an inactivated, split-virus, unadjuvanted AH1pdm vaccine in HCW was conducted. A safe and effective vaccine was needed after the emergence of AH1pdm in April 2009. We analyzed the immunogenicity and safety of the vaccine. A total of 409 subjects were enrolled and given 15 μg hemagglutinin antigen by s.c. injection. Antibody titers were measured using hemagglutination-inhibition antibody assays before vaccination and 28 days after. The co-primary immunogenicity end-points were the proportion of subjects with antibody titers of 1:40 or more, the proportion of subjects with either seroconversion or a significant increase in antibody titer, and the factor increase in geometric mean titer. We collected 389 pair samples. Antibody titers of 1:40 or more were observed in 148 of 389 subjects (38.0%, 95% CI: 33.2-42.9). The immunogenicity was also confirmed in other end-points, but was not sufficient and was lower than in previous reports. A total of 96 of adverse events was reported: 51 local events and 57 systemic events. There were 12 subjects with both local and systemic events. Nearly all events were mild to moderate except in four subjects. A single 15-μg dose of AH1pdm vaccine did not induce sufficient immunogenicity in HCW, with mild-to-moderate vaccine-associated adverse events. We need to consider further improvement of the AH1pdm vaccine program in HCW for the prevention of nosocomial infection, as well as for the benefit of HCW.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号