首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pterygotid eurypterids have traditionally been interpreted as active, high-level, visual predators; however, recent studies of the visual system and cheliceral morphology of the pterygotid Acutiramus contradict this interpretation. Here, we report similar analyses of the pterygotids Erettopterus, Jaekelopterus and Pterygotus, and the pterygotid sister taxon Slimonia. Representative species of all these genera have more acute vision than A. cummingsi. The visual systems of Jaekelopterus rhenaniae and Pterygotus anglicus are comparable to that of modern predatory arthropods. All species of Jaekelopterus and Pterygotus have robust crushing chelicerae, morphologically distinct from the weaker slicing chelicerae of Acutiramus. Vision in Erettopterus osiliensis and Slimonia acuminata is more acute than in Acutiramus cummingsi, but not to the same degree as in modern active predators, and the morphology of the chelicerae in these genera suggests a grasping function. The pterygotids evolved with a shift in ecology from generalized feeder to specialized predator. Pterygotid eurypterids share a characteristic morphology but, although some were top predators, their ecology differs radically between genera.  相似文献   

2.
Abstract: The Silurian and Lower Devonian pterygotid eurypterids were the largest of all arthropods, but their origin and early evolution are poorly understood. Pterygotus? ventricosus from Kokomo, Indiana, is shown to be the most basal of the pterygotids and constitutes the sister taxon to the rest of the clade. P.? ventricosus has walking appendages similar to those of Slimonia, which is the sister taxon of pterygotids. There is no evidence in P.? ventricosus of the dorsal median pretelson carina characteristic of other pterygotids, but the taxon does have the typical pterygotid undivided genital appendage. The status of the iconic pterygotid character (and presumed synapomorphy), the enlargement of the chelicerae, is uncertain in the Kokomo pterygotid. All the diagnostic characters of pterygotids did not develop simultaneously. A new genus Ciurcopterus is erected to accommodate the Kokomo pterygotid and Pterygotus? sarlei Ciurca and Tetlie.  相似文献   

3.
Gamasid mites are prominent predators of soil communities. Some species are said to be specialized predators feeding on nematodes or arthropods. A conspicuous difference between species is the structure of the chelicerae. We test the hypothesis that measurable attributes of the chelicerae are related to diet. We measured ten morphometric parameters of the chelicerae from 52 species within 29 genera. For 28 species and 26 genera we were able to extract food preferences from the literature and own observations. We found some weak indications that arthropod predators have proportionally larger chelicerae compared to similar-sized species feeding on nematodes or other worm-like diets. The latter are characterized by a larger number of teeth along the digitus fixus and digitus mobilis.  相似文献   

4.
Batesian and aggressive mimicry are united by deceit: Batesian mimics deceive predators and aggressive mimics deceive prey. This distinction is blurred by Myrmarachne melanotarsa, an ant-like jumping spider (Salticidae). Besides often preying on salticids, ants are well defended against most salticids that might target them as potential prey. Earlier studies have shown that salticids identify ants by their distinctive appearance and avoid them. They also avoid ant-like salticids from the genus Myrmarachne. Myrmarachne melanotarsa is an unusual species from this genus because it typically preys on the eggs and juveniles of ant-averse salticid species. The hypothesis considered here is that, for M. melanotarsa, the distinction between Batesian and aggressive mimicry is blurred. We tested this by placing female Menemerus sp. and their associated hatchling within visual range of M. melanotarsa, its model, and various non-ant-like arthropods. Menemerus is an ant-averse salticid species. When seeing ants or ant mimics, Menemerus females abandoned their broods more frequently than when seeing non-ant-like arthropods or in control tests (no arthropods visible), as predicted by our hypothesis that resembling ants functions as a predatory ploy.  相似文献   

5.
Giant claw reveals the largest ever arthropod   总被引:1,自引:1,他引:0  
The fossil record has yielded various gigantic arthropods, in contrast to their diminutive proportions today. The recent discovery of a 46 cm long claw (chelicera) of the pterygotid eurypterid (‘sea scorpion’) Jaekelopterus rhenaniae, from the Early Devonian Willwerath Lagerstätte of Germany, reveals that this form attained a body length of approximately 2.5 m—almost half a metre longer than previous estimates of the group, and the largest arthropod ever to have evolved. Gigantism in Late Palaeozoic arthropods is generally attributed to elevated atmospheric oxygen levels, but while this may be applicable to Carboniferous terrestrial taxa, gigantism among aquatic taxa is much more widespread and may be attributed to other extrinsic factors, including environmental resources, predation and competition. A phylogenetic analysis of the pterygotid clade reveals that Jaekelopterus is sister-taxon to the genus Acutiramus, and is among the most derived members of the pterygotids, in contrast to earlier suggestions.  相似文献   

6.
The chelicerae, the first pair of appendages in Chelicerata, exhibit morphological and functional variation across arachnid orders. The two-segmented chelicerae of pseudoscorpions serve multiple functions including grooming, courtship, and grasping prey. Scanning electron microscopy was used to investigate structures found on the chelicera; the serrulae interiores and exteriores, grooming organs, were given special attention. Functional analogies were made between the cheliceral structures documented in pseudoscorpions and those found in other arthropods. The novel discovery of vestitural papillae and a patch of elongate papillae on the serrula exterior are reported. The focal taxon for the study is Synsphyronus (Garypidae), an Australasian genus.  相似文献   

7.
Spiders are important predators in terrestrial ecosystems, yet we know very little about the principal feeding structures of spiders, the chelicerae, which are functionally equivalent to “jaws” or “mandibles” and are an extremely important aspect of spider biology. In particular, members of Palpimanoidea have evolved highly unusual cheliceral morphologies and functions, including high-speed, ballistic movements in mecysmaucheniid spiders, the fastest arachnid movements known thus far, and the elongated, highly maneuverable chelicerae of archaeids that use an attack-at-a-distance strategy. Here, using micro-Computed-Tomography scanning techniques, we perform a comparative study to examine cheliceral muscle morphology in six different spider specimens representing five palpimanoid families. We provide a hypothesis for homology in palpimanoid cheliceral muscles and then compare and contrast these findings with previous studies on other non-palpimanoid spiders. We document and discuss two sets of cheliceral muscles in palpimanoids that have not been previously observed in other spiders or which may represent a position shift compared to other spiders. In the palpimanoids, Palpimanus sp., Huttonia sp., and Colopea sp. showed similar cheliceral muscle anatomy. In Eriauchenius ranavalona, which has highly maneuverable chelicerae, some of the muscles have a more horizontal orientation, and there is a greater degree of cheliceral muscle divergence. In Zearchaea sp. and Aotearoa magna, some muscles have also shifted to a more horizontal orientation, and in Zearchaea sp., a species with a ballistic, high-speed predatory strike, there is a loss of cheliceral muscles. This research is a first step toward understanding cheliceral form and function across spiders.  相似文献   

8.
A new geophilomorph centipede, Geophilus hadesi sp. n., is described from caves in the Velebit Mountain, central Croatia. Together with Geophilus persephones Foddai & Minelli, 1999, described from Pierre Saint-Martin cave in France, they are the only two remarkably troglomorphic geophilomorphs hitherto known. The new species apparently belongs to a group of Geophilus species inhabiting mainly Western and Southern Europe, with a uniquely modified pretarsus in the second maxillae. Geophilus hadesi sp. n. shows unusual traits, some of which commonly found in troglobitic arthropods, including exceptionally elongated antennae, trunk segments and leg claws. The species is described upon specimens found in two caves at a depth below -250 m. Another two specimens apparently belonging to the same species have been recorded in another deep vertical cave at -980 m and -1100 m. The latter represents the world’s deepest record of Chilopoda as a whole.  相似文献   

9.
广东双季稻区杂草地和稻田中捕食性节肢动物的群落动态   总被引:10,自引:1,他引:10  
用吸虫器采样法,于1998年对广东省大沙镇双季稻区两块相邻的杂草地和稻田中捕食性节肢动物群落的结构进行了研究。在杂草地生境中共采集到73种捕食性节肢动物,其中55种为蜘蛛,18种为昆虫。3月21日,早稻田翻耕前,在杂草地中采集到33种捕食性节肢动物,密度为130头/m2。4月4日,水稻移栽1周后,在杂草地中采到29种捕食性节肢动物,密度为92头/m2;同期在稻田中采到12种捕食性节肢动物,密度为16.2头/m2。5月13日早稻成熟前期,在杂草地中只采到19种捕食性节肢动物,密度为28头/m2;而此期,在稻田中采到27种捕食性节肢动物,密度为53.2头/m2。在晚稻生长期,杂草地捕食性节肢动物与稻田捕食性节肢动物物种数和密度的变化与早稻生长期情况相似。杂草地与稻田两生境间的捕食性节肢动物群落的相似性系数大于0.5,由此可见,这两类生境中捕食性节肢动物的物种组成是非常相似的,具有较多的共有种。杂草地捕食性节肢动物群落可能是稻田捕食性节肢动物群落重建的重要种库之一。  相似文献   

10.
Exposure of arthropod predators to Cry1Ab toxin in Bt maize fields   总被引:5,自引:0,他引:5  
Abstract.  1. To assess the risks of an insect-resistant transgenic plant for non-target arthropods, it is important to investigate the exposure of non-target species to the transgene product. Exposure of predators in the field depends on the toxin levels in food sources, their feeding ecology and that of their prey.
2. To verify the transmission of Cry1Ab toxin through the food chain, and thus exposure of predators in the field, samples from different plant tissues, herbivores, and predators in Bt maize fields in Spain (Event 176) were collected at different periods over the season and the toxin content was measured using ELISA. Complementary laboratory studies were performed with the omnivorous predator Orius majusculus to assess the toxin uptake and persistence after feeding on variable Bt-containing food sources.
3. Field results revealed that toxin content in some herbivores was negligible (aphids, thrips, leafhoppers) compared with those in spider mites. The latter herbivore only occurred after pollen shed and contained three times greater toxin levels than Bt maize leaves.
4. Data confirmed that the Bt toxin can be transferred to predators, that is to say to Orius spp., Chrysoperla spp., and Stethorus sp. This only applied when Bt maize pollen or spider mites were available. The passage of Bt toxin to O. majusculus via these two food sources was also confirmed in the laboratory. Contrastingly, some predators in the field (hemerobiids, Nabis sp., Hippodamia sp., Demetrias sp.) contained no or negligible toxin levels even when pollen or spider mites were present.
5. Besides essential information for exposure assessment of numerous arthropod predators, this study provides an insight into the feeding ecology of different arthropods in the maize system.  相似文献   

11.
We herein describe Surusicaris elegans gen. et sp. nov. (in Isoxyidae, amended), a middle (Series 3, Stage 5) Cambrian bivalved arthropod from the new Burgess Shale deposit of Marble Canyon (Kootenay National Park, British Columbia). Surusicaris exhibits 12 simple, partly undivided biramous trunk limbs with long tripartite caeca, which may illustrate a plesiomorphic “fused” condition of exopod and endopod. We construe also that the head is made of five somites (= four segments), including two eyes, one pair of anomalocaridid-like frontalmost appendages, and three pairs of poorly sclerotized uniramous limbs. This fossil may therefore be a candidate for illustrating the origin of the plesiomorphic head condition in euarthropods, and questions the significance of the “two-segmented head” in, e.g., fuxianhuiids. The frontalmost appendage in isoxyids is intriguingly disparate, bearing similarities with both dinocaridids and euarthropods. In order to evaluate the relative importance of bivalved arthropods, such as Surusicaris, in the hypothetical structuro-functional transition between the dinocaridid frontal appendage and the pre-oral—arguably deutocerebral—appendage of euarthropods, we chose a phenetic approach and computed morphospace occupancy for the frontalmost appendages of 36 stem and crown taxa. Results show different levels of evolutionary decoupling between frontalmost appendage disparity and body plans. Variance is greatest in dinocaridids and “stem bivalved” arthropods, but these groups do not occupy the morphospace homogeneously. Rather, the diversity of frontalmost appendages in “stem bivalved” arthropods, distinct in its absence of clear clustering, is found to link the morphologies of “short great appendages,” chelicerae and antennules. This find fits the hypothesis of an increase in disparity of the deutocerebral appendage prior to its diversification in euarthropods, and possibly corresponds to its original time of development. The analysis of this pattern, however, is sensitive to the—still unclear—extent of polyphyly of the “stem bivalved” taxa.  相似文献   

12.
A new dictynid species, Argenna sibirica sp. n., is described based on a male from the environs of Tobolsk. The new species has a combination of somatic criteria typical of the genera Argenna Thorell, 1870 and Altella Simon, 1874 but differs from them in the presence of numerous warts on the chelicerae, an elongated labium, and an elongated crescent-shaped palp conductor.  相似文献   

13.
A new species of the ant genus Cardiocondyla Emery, 1869 – Cardiocondyla pirata sp. n. – is described from the Philippines. The species belongs to an Indo-Malayan group of six species that is characterized by workers having a strongly bilobate postpetiolar sternite and a thickset mesosoma with strongly convex dorsal profile as well as wingless, ergatoid males with sickle-shaped mandibles. The female castes show a pigmentation pattern not known from any ant worldwide. If having any adaptive value, a possible function of this structure is supposed to be visual dissolution of body shape in order to irritate predators.  相似文献   

14.
Arthropod herbivory induces plant volatiles that can be used by natural enemies of the herbivores to find their prey. This has been studied mainly for arthropods that prey upon or parasitise herbivorous arthropods but rarely for insectivorous birds, one of the main groups of predators of herbivorous insects such as lepidopteran larvae. Here, we show that great tits (Parus major) discriminate between caterpillar‐infested and uninfested trees. Birds were attracted to infested trees, even when they could not see the larvae or their feeding damage. We furthermore show that infested and uninfested trees differ in volatile emissions and visual characteristics. Finally, we show, for the first time, that birds smell which tree is infested with their prey based on differences in volatile profiles emitted by infested and uninfested trees. Volatiles emitted by plants in response to herbivory by lepidopteran larvae thus not only attract predatory insects but also vertebrate predators.  相似文献   

15.

Background

Attempts to eradicate alien arthropods often require pesticide applications. An effort to remove an alien beetle from Central Park in New York City, USA, resulted in widespread treatments of trees with the neonicotinoid insecticide imidacloprid. Imidacloprid''s systemic activity and mode of entry via roots or trunk injections reduce risk of environmental contamination and limit exposure of non-target organisms to pesticide residues. However, unexpected outbreaks of a formerly innocuous herbivore, Tetranychus schoenei (Acari: Tetranychidae), followed imidacloprid applications to elms in Central Park. This undesirable outcome necessitated an assessment of imidacloprid''s impact on communities of arthropods, its effects on predators, and enhancement of the performance of T. schoenei.

Methodology/Principal Findings

By sampling arthropods in elm canopies over three years in two locations, we document changes in the structure of communities following applications of imidacloprid. Differences in community structure were mostly attributable to increases in the abundance of T. schoenei on elms treated with imidacloprid. In laboratory experiments, predators of T. schoenei were poisoned through ingestion of prey exposed to imidacloprid. Imidacloprid''s proclivity to elevate fecundity of T. schoenei also contributed to their elevated densities on treated elms.

Conclusions/Significance

This is the first study to report the effects of pesticide applications on the arthropod communities in urban landscapes and demonstrate that imidacloprid increases spider mite fecundity through a plant-mediated mechanism. Laboratory experiments provide evidence that imidacloprid debilitates insect predators of spider mites suggesting that relaxation of top-down regulation combined with enhanced reproduction promoted a non-target herbivore to pest status. With global commerce accelerating the incidence of arthropod invasions, prophylactic applications of pesticides play a major role in eradication attempts. Widespread use of neonicotinoid insecticides, however, can disrupt ecosystems tipping the ecological balance in favor of herbivores and creating pest outbreaks.  相似文献   

16.
Examination of material held at the Palaeontological Institute, Moscow, enables the identification of two novel chasmataspidid species: Nahlyostaspis bergstroemi gen. et sp. nov. and Skrytyaspis andersoni gen. et sp. nov. ‘Eurypterusstoermeri and ‘Tylopterellamenneri are both redescribed as chasmataspidids, having previously been assigned to Eurypterida. ‘T’. menneri is transferred to the new genus Dvulikiaspis gen. nov. An identical prosomal structure is identified in ‘Eurypterusstoermeri and Heteroaspis novojilovi from the Devonian of Germany and the two species are synonymized, with ‘Estoermeri having priority. The previous synonymy of H. novojilovi with Diploaspis casteri is rejected. The presence of ophthalmic ridges is confirmed within Diploaspididae, and new structural characteristics of their bucklers are identified.  相似文献   

17.
The segmental architecture of the arthropod head is one of the most controversial topics in the evolutionary developmental biology of arthropods. The deutocerebral (second) segment of the head is putatively homologous across Arthropoda, as inferred from the segmental distribution of the tripartite brain and the absence of Hox gene expression of this anterior-most, appendage-bearing segment. While this homology statement implies a putative common mechanism for differentiation of deutocerebral appendages across arthropods, experimental data for deutocerebral appendage fate specification are limited to winged insects. Mandibulates (hexapods, crustaceans and myriapods) bear a characteristic pair of antennae on the deutocerebral segment, whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the cricket, Gryllus bimaculatus, cephalic appendages are differentiated from the thoracic appendages (legs) by the activity of the appendage patterning gene homothorax (hth). Here we show that embryonic RNA interference against hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg transformations, and also in some cases pedipalp-to-leg transformations. In more strongly affected embryos, adjacent appendages undergo fusion and/or truncation, and legs display proximal defects, suggesting conservation of additional functions of hth in patterning the antero-posterior and proximo-distal appendage axes. Expression signal of anterior Hox genes labial, proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos, consistent with results previously obtained with the insect G. bimaculatus. Our results substantiate a deep homology across arthropods of the mechanism whereby cephalic appendages are differentiated from locomotory appendages.  相似文献   

18.
Low temperature scanning electron microscopy (LT-SEM) has revealed anatomical details suggesting that Osperalycus and Gordialycus (Acariformes: Nematalycidae) have an unusual feeding apparatus that is hypothesized to be specialized for feeding on the fluid contents of small microorganisms (diameter < 5 μm). Both mite genera have a feeding strategy that appears to involve picking up small microorganisms and placing them onto the subcapitulum for puncturing. However, they have slightly different variants of the same basic rupturing mechanism. Whereas Gordialycus has evolved expansive and convergent rutella to hold the microorganisms in place while pushing chelicerae into them, Osperalycus has evolved a pouch into which a microorganism is inserted. The rutella reinforce this pouch while the chelicerae break up the microorganism. Both types of mouthpart apparatus seem to be adapted to minimize waste, an appropriate specialization given the organically impoverished habitats in which these mites live.  相似文献   

19.
Visual acuity is a major parameter for quality of vision and quality of life. Information on visual acuity and its associated factors in rural societies almost untouched by any industrialization is mostly non-available. It was, therefore, the purpose of our study to determine the distribution of visual acuity and its associated factors in a rural population not marked influenced by modern lifestyle. The population-based Central India Eye and Medical Study included 4711 subjects (aged 30+ years), who underwent a detailed ophthalmologic examination including visual acuity measurement. Visual acuity measurements were available for 4706 subjects with a mean age of 49.5±13.4 years (range: 30–100 years). BCVA decreased significantly (P<0.001) from the moderately hyperopic group (0.08±0.15 logMAR) to the emmetropic group (0.16±0.52 logMAR), the moderately myopic group (0.28±0.33 logMAR), the highly hyperopic group (0.66±0.62 logMAR) and finally the highly myopic group (1.32±0.92 logMAR). In multivariate analysis, BCVA was significantly associated with the systemic parameters of lower age (P<0.001), higher level of education (P<0.001), higher body stature (P<0.001) and higher body mass index (P<0.001), and with the ophthalmic parameters of more hyperopic refractive error (spherical equivalent) (P<0.001), shorter axial length (P<0.001), lower degree of nuclear cataract (P<0.001), and lower intraocular pressure (P = 0.006). The results suggest that in the rural population of Central India, major determinants of visual acuity were socioeconomic background, body stature and body mass index, age, refractive error, cataract and intraocular pressure.  相似文献   

20.
Visual organs are widely distributed throughout the animal kingdom and exhibit a great diversity of morphologies. Compound eyes consisting of numerous visual units (ommatidia) are the oldest preserved visual systems of arthropods, but their origins are obscure and hypothetical models for their evolution have been difficult to test in the absence of unequivocal fossil evidence. Here we reveal the detailed eye structures of well-preserved Early Cambrian lobopodians Luolishania longicruris and Hallucigenia fortis from the Chengjiang Lagerstätte, China. These animals possess a pair of eyes composed of at least two visual units, interpreted as pigment cups. Contrary to previous suggestions that Cambrian lobopodians possessed ocellus-like eyes comparable to those of extant onychophorans, this multi-component structure is more similar to the lateral eyes of arthropods. Morphological comparison and phylogenetic analyses indicate that these lobopodian eyes may represent an early stage in the evolution of the ancestral visual system of euarthropods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号