首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Carbonic anhydrase (CA) is an abundant protein in most photosynthesizing organisms and higher plants. This review paper considers the physiological importance of the more abundant CA isoforms in photosynthesis, through their effects on CO2 diffusion and other processes in photosynthetic organisms. In plants, CA has multiple isoforms in three different families (α, β and γ) and is mainly known to catalyze the CO2 equilibrium. This reversible conversion has a clear role in photosynthesis, primarily through sustaining the CO2 concentration at the site of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco). Despite showing the same major reaction mechanism, the three main CA families are evolutionarily distinct. For different CA isoforms, cellular localization and total gene expression as a function of developmental stage are predicted to determine the role of each family in relation to the net assimilation rate. Reaction–diffusion modeling and observational evidence support a role for CA activity in reducing resistance to CO2 diffusion inside mesophyll cells by facilitating CO2 transfer in both gas and liquid phases. In addition, physical and/or biochemical interactions between CAs and other membrane‐bound compartments, for example aquaporins, are suggested to trigger a CO2‐sensing response by stomatal movement. In response to environmental stresses, changes in the expression level of CAs and/or stimulated deactivation of CAs may correspond with lower photosynthetic capacity. We suggest that further studies should focus on the dynamics of the relationship between the activity of CAs (with different subcellular localization, abundance and gene expression) and limitations due to CO2 diffusivity through the mesophyll and supply of CO2 to photosynthetic reactions.  相似文献   

2.
Carbonic anhydrase in relation to higher plants   总被引:12,自引:0,他引:12  
The review incorporates recent information on carbonic anhydrase (CA, EC: 4.2.1.1) pertaining to types, homology, regulation, purification, in vitro stability, and biological functions with special reference to higher plants. CA, a ubiquitous enzyme in prokaryotes and higher organisms represented by four distinct families, is involved in diverse biological processes, including pH regulation, CO2 transfer, ion exchange, respiration, and photosynthetic CO2 fixation. CA from higher plants traces its origin with prokaryotes and exhibits compartmentalization among their organs, tissues, and cellular organelles commensurate with specific functions. In leaves, CA represents 1–20 % of total soluble protein and abundance next only to ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO) in chloroplast, facilitating CO2 supply to phosphoenol pyruvate carboxylase in C4 and CAM plants and RuBPCO in C3 plants. It confers special significance to CA as an efficient biochemical marker for carbon sequestration and environmental amelioration in the current global warming scenario linked with elevated CO2 concentrations.  相似文献   

3.
Carbonic anhydrase enzymes (EC 4.2.1.1, CAs) are metalloenzyme families that catalyze the rapid conversion of H2O and CO2 to HCO3 and H+. CAs are found in different tissues where they participate in various significant biochemical processes such as ion transport, carbon dioxide respiration, ureagenesis, lipogenesis, bone resorption, electrolyte secretion, acid-base balance, and gluconeogenesis. In such processes, many CAs are significant therapeutic targets because of their inhibitory potentials especially in the treatment of some diseases such as edema, glaucoma, obesity, cancer, epilepsy, and osteoporosis. Acetylcholinesterase (AChE) and Butyrylcholinesterase (BuChE) inhibitors are also valuable compounds for different therapeutic applications including Alzheimer’s disease. In this work, we report a fast and effective synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and also their CA and cholinesterases inhibitory properties. Our findings showed that these Schiff base derivatives, with triazole ring, found as strong CA and cholinesterases inhibitors.  相似文献   

4.

In most vertebrates, red blood cell carbonic anhydrase (RBC CA) plays a critical role in carbon dioxide (CO2) transport and excretion across epithelial tissues. Many early-diverging fishes (e.g., hagfish and chondrichthyans) are unique in possessing plasma-accessible membrane-bound CA-IV in the gills, allowing some CO2 excretion to occur without involvement from the RBCs. However, implications of this on RBC CA function are unclear. Through homology cloning techniques, we identified the putative protein sequences for RBC CA from nine early-diverging species. In all cases, these sequences contained a modification of the proton shuttle residue His-64, and activity measurements from three early-diverging fish demonstrated significantly reduced CA activity. Site-directed mutagenesis was used to restore the His-64 proton shuttle, which significantly increased RBC CA activity, clearly illustrating the functional significance of His-64 in fish red blood cell CA activity. Bayesian analyses of 55 vertebrate cytoplasmic CA isozymes suggested that independent evolutionary events led to the modification of His-64 and thus reduced CA activity in hagfish and chondrichthyans. Additionally, in early-diverging fish that possess branchial CA-IV, there is an absence of His-64 in RBC CAs and the absence of the Root effect [where a reduction in pH reduces hemoglobin’s capacity to bind with oxygen (O2)]. Taken together, these data indicate that low-activity RBC CA may be present in all fish with branchial CA-IV, and that the high-activity RBC CA seen in most teleosts may have evolved in conjunction with enhanced hemoglobin pH sensitivity.

  相似文献   

5.
Carbonic anhydrase (CA) is a ubiquitous metalloenzyme responsible for accelerating the interconversion of CO2 and bicarbonate. Although CAs are involved in a broad range of biochemical processes involving carboxylation or decarboxylation reactions, they are of special interest due to their role in photosynthetic CO2 assimilation in marine phytoplankton, especially under low‐CO2 conditions. Several phylogenetically independent classes of CAs have been identified in a variety of marine phytoplankton. TWCA1, first discovered in Thalassiosira weissflogii (Grunow) G. Fryxell & Hasle, is the founding member of the δ‐class of CAs; these appear to be extracellular enzymes, but are still relatively poorly characterized. To date, it has remained uncertain whether TWCA1 possesses true CA activity due to the difficulty in producing a functional protein in a heterologous expression system. Herein we describe the fusion of a full‐length open reading frame of TWCA1 to the coding sequence of a self‐splicing intein in a pTWIN2 expression vector that has allowed successful production of a functional enzyme in Escherichia coli. Assay of the recombinant protein shows that TWCA1 is a catalytically active δ‐CA possessing both CO2 hydration and esterase activity.  相似文献   

6.
Carbonic anhydrase (CA) (EC 4.2.1.1) enzymes catalyze the reversible hydration of CO2, a reaction that is important in many physiological processes. We have cloned and sequenced a full-length cDNA encoding an intracellular β-CA from the unicellular green alga Coccomyxa. Nucleotide sequence data show that the isolated cDNA contains an open reading frame encoding a polypeptide of 227 amino acids. The predicted polypeptide is similar to β-type CAs from Escherichia coli and higher plants, with an identity of 26% to 30%. The Coccomyxa cDNA was overexpressed in E. coli, and the enzyme was purified and biochemically characterized. The mature protein is a homotetramer with an estimated molecular mass of 100 kD. The CO2-hydration activity of the Coccomyxa enzyme is comparable with that of the pea homolog. However, the activity of Coccomyxa CA is largely insensitive to oxidative conditions, in contrast to similar enzymes from most higher plants. Fractionation studies further showed that Coccomyxa CA is extrachloroplastic.  相似文献   

7.
Carbonic anhydrases (CAs, EC 4.2.1.1) are a group of metalloenzymes that play important roles in carbon metabolism, pH regulation, CO2 fixation in plants, ion transport etc., and are found in all eukaryotic and many microbial organisms. This family of enzymes catalyzes the interconversion of CO2 and HCO3?. There are at least 16 different CA isoforms in the alpha structural class (α-CAs) that have been isolated in higher vertebrates, with CA isoform II (CA II) being ubiquitously abundant in all human cell types. CA inhibition has been exploited clinically for decades for various classes of diuretics and anti-glaucoma treatment. The characterization of the overexpression of CA isoform IX (CA IX) in certain tumors has raised interest in CA IX as a diagnostic marker and drug target for aggressive cancers and therefore the development of CA IX specific inhibitors. An important goal in the field of CA is to identify, rationalize, and design potential compounds that will preferentially inhibit CA IX over all other isoforms of CA. The variations in the active sites between isoforms of CA are subtle and this causes non-specific CA inhibition which leads to various side effects. In the case of CA IX inhibition, CA II along with other isoforms of CA provide off-target binding sites which is undesirable for cancer treatment. The focus of this article is on CA IX inhibition and two different structural approaches to CA isoform specific drug designing: tail approach and fragment addition approach.  相似文献   

8.
H.F. Bundy  S. Coté 《Phytochemistry》1980,19(12):2531-2534
Carbonic anhydrase (CA) was purified from the unicellular green alga Chlamydomonas reinhardii, and the purity of the preparation was established by gradient gel electrophoresis. The purified enzyme exhibited a MW of 165 000 and contained 6 atoms of Zn. The subunit MW, as determined by dodecyl sulfate electrophoresis, was 27 000. These results are consistent with a quarternary structure which is hexameric, each monomer containing 1 g atom of Zn. Like spinach CA, and in contrast to other oligomeric plant CAs, a sulfhydryl reducing agent is not needed to stabilize the enzyme. CO2-hydrase activity was inhibited by both acetazolamide (I50 = 7.8 × 10?9M) and sulfanilamide (I50 = 1.3 × 10?5M), as well as by certain inorganic anions. The purified enzyme showed relatively weak esterase activity with p-nitrophenyl acetate but was an extremely effective esterase with 2-hydroxy-5-nitro-α-toluenesulfonic acid sultone as the substrate. Both esterase activities could be completely inhibited by adding acetazolamide. In its gross structural characteristics, the C. reinhardii enzyme resembles the CAs from higher plants. However, in its esterase activity and the inhibition by sulfonamides it is markedly different from plant CAs and bears more resemblance to erythrocyte CAs.  相似文献   

9.
Carbonic anhydrases (CAs) are metalloenzymes that catalyze the interconversion of carbon dioxide (CO2) and hydrogen carbonate. CAs are distributed over all the three domains of life and are divided into five distinct evolutionarily unrelated gene families (α, β, γ, δ, ζ). In the large fungal kingdom, the majority of fungi encode multiple copies of β-CAs, with some also possessing genes for α-class CAs. Hemiascomycetous and basidiomycetous yeasts encode one or two β-CAs, while most of the filamentous ascomycetes have multiple copies of genes encoding α- and β-CAs. The functions of fungal β-CAs have been investigated intensively, while the role of fungal α-CAs is mostly unknown. The β-CAs are involved in sexual development, CO2-sensing, pathogenicity, and survival in ambient air. Only recently, researchers have begun to use functional and structural data of CAs from pathogenic and non-pathogenic organisms to develop powerful and effective drugs and inhibitors or to identify enzymes that can be utilized in industrial applications. Despite the large number of fungal CAs known, only five have been characterized structurally: the α-CA AoCA of Aspergillus oryzae, the full length β-CA Can2 from the pathogenic basidiomycete Cryptococcus neoformans, the N-terminally truncated Saccharomyces cerevisiae β-CA Nce103, and two β-CAs of Sordaria macrospora. This review focuses on the functional and structural properties of fungal CAs.  相似文献   

10.
The genome of the protozoan parasite Plasmodium falciparum, the causative agent of the most lethal type of human malaria, contains a single gene annotated as encoding a carbonic anhydrase (CAs, EC 4.2.1.1) thought to belong to the α-class, PfCA. Here we demonstrate the kinetic properties of PfCA for the CO2 hydration reaction, as well as an inhibition study of this enzyme with inorganic and complex anions and other molecules known to interact with zinc proteins, including sulfamide, sulfamic acid, and phenylboronic/arsonic acids, detecting several low micromolar inhibitors. A closer examination of the sequence of this and the CAs from other Plasmodium spp., as well as a phylogenetic analysis, revealed that these protozoa encode for a yet undisclosed, new genetic family of CAs termed the η-CA class. The main features of the η-CAs are described in this report.  相似文献   

11.
Carbonic anhydrase (CA) is a metalloenzyme that performs interconversion between CO2 and the bicarbonate ion (HCO3 ?). CAs appear among all taxonomic groups of three domains of life. Wide spreading of CAs in nature is explained by the fact that carbon, which is the major constituent of the enzyme’s substrates, is a key element of life on the Earth. Despite the diversity of CAs, they all carry out the same reaction of CO2/HCO3 ? interconversion. Thus, CA obviously represents a universal enzyme of the carbon-based life. Within the classification of CAs, here we proposed the existence of an extensive family of CA-related proteins (γCA-RPs)–the inactive forms of γ-CAs, which are widespread among the Archaea, Bacteria, and, to a lesser extent, in Eukarya. This review focuses on the history of CAs discovery and integrates the most recent data on their classification, catalytic mechanisms, and physiological roles at various organisms.  相似文献   

12.
Carbonic anhydrases, catalysing the reversible CO2 hydration reaction, contribute in all living organisms to the maintenance of stable metabolic functions depending on intracellular concentrations of carbon dioxide, bicarbonate, and protons. Recent studies have examined how CAs affect bacterial lifecycle, considering these enzymes druggable targets due to interference with their activities by using inhibitors or activators. Here, we propose Escherichia coli cells as a model for testing the effect of acetazolamide (AZA), a potent CA inhibitor, on bacterial survival by evaluating E. coli growth through its glucose consumption. AZA, at concentrations higher than 31.2 µg/mL, was able to impair E. coli growth and glucose uptake. AZA is a good inhibitor of the two recombinant E. coli CAs, the β-CA CynT2, and the γ-CA EcoCAγ, with KIs of 227 and 248 nM, respectively. This study provides a proof-of-concept, low-cost method for identifying effective CA inhibitors capable of impairing bacterial metabolism.  相似文献   

13.
The main function of carbonic anhydrases (CAs) in cancer cells is the pH regulation through a conversion of H2O and CO2 to H+ and HCO3. However, the data of in vitro and in vivo studies have demonstrated that transmembrane isoforms of CA IX and CA XII are involved in various steps of cancer cell migration, invasion and metastasis. According to literature, inhibition of these CAs can affect the expression of multiple proteins. Some scientific groups have reported the possible interactions between CA IX and E-cadherin–catenin system, CA IX and integrins, CA IX, CA XII and ion transporters, which all are highly involved in cell-to-cell adhesion, the formation of membrane protrusions and focal adhesions. Nevertheless, CA IX and CA XII have a high impact on tumour growth and metastases formation. The data discussed in this review are quite recent. It highly support the role of CA IX and CA XII in various cancer metastasis processes through their interactions to other invasion proteins. Nevertheless, all findings show the great potential of these CAs in the context of research and application in clinical use.  相似文献   

14.
Among protein families, carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes characterized by a common reaction mechanism in all life domains: the carbon dioxide hydration to bicarbonate and protons (CO2+H2O ? HCO3?+H+). Six genetically distinct CA families are known to date, the α-, β-, γ-, δ-, ζ- and η-CAs. The last CA class was recently discovered analyzing the amino acid sequences of CAs from Plasmodia. Bacteria encode for enzymes belonging to the α-, β-, and γ-CA classes and recently, phylogenetic analysis revealed an interesting relationship regarding the evolution of bacterial CA classes. This result evidenced that the three bacterial CA classes, in spite of the high level of the structural similarity, are evolutionarily distinct, but we noted that the primary structure of some β-CAs identified in the genome of Gram-negative bacteria present a pre-sequence of 18 or more amino acid residues at the N-terminal part. These observations and subsequent phylogenetic data presented here prompted us to propose that the β-CAs found in Gram-negative bacteria with a periplasmic space and characterized by the presence of a signal peptide might have a periplasmic localization and a role similar to that described previously for the α-CAs.  相似文献   

15.
Using mass-spectrometric measurements of 18O exchange from 13C18O2 intracellular carbonic anhydrase (CA) activity was investigated in the unicellular green algae Dunaliella tertiolecta and Chlamydomonas reinhardtii which were either grown on air enriched with 5% CO2 (high-Ci cells) or on air (low-Ci cells). In D. tertiolecta high- and low-Ci cells had detectable levels of internal CA activity when measured under in-vivo conditions and this activity could be split up into three distinct forms. One CA was not associated with the chloroplasts, while two isozymes were found to be located within the plastids. The activities of all intracellular CAs were always about twofold higher in low than in high-Ci cells of D. tertiolecta and the chloroplastic enzymes were completely induced within 4 h of adaptation to air. One of the chloroplastic CAs was found to be soluble the other was insoluble. In addition to the physical differences, MgSO4 in vitro caused a more than twofold stimulation of the soluble activity while the insoluble form of CA remained rather unaffected. In C. reinhardtii, MgSO4 increased the soluble CA activity by 346% and the concentration of MgSO4 required for half-maximum stimulation was between 10 and 15 mM. Again, the insoluble CA activity was not affected by MgSO4. Furthermore, the soluble isoenzyme was considerably more sensitive to ethoxyzolamide, a potent inhibitor of CA, than the insoluble enzyme. The concentration of inhibitor causing 50% inhibition of soluble CA activity was 110 and 85 μM ethoxyzolamide for D. tertiolecta and C. reinhardtii, respectively. From these data we conclude that the two chloroplast-associated CAs are distinct enzymes.  相似文献   

16.
17.
It has been reported that carbonic anhydrase (CA) activity in plant leaves is decreased by Zn deficiency. We examined the effects of Zn deficiency on the activity of CA and on photosynthesis by leaves in rice plants (Oryza sativa L.). Zn deficiency increased the transfer resistance from the stomatal cavity to the site of CO2 fixation 2.3-fold and, consequently, the value of the transfer resistance relative to the total resistance in the CO2-assimilation process increased from 10% to 21%. This change led to a reduced CO2 concentration at the site of CO2 fixation, resulting in an increased gradient of CO2 between the stomatal cavity and this site. The present findings support the hypothesis that CA functions to facilitate the supply of CO2 from the stomatal cavity to the site of CO2 fixation. We also showed that the level of mRNA for CA decreased to 13% of the control level during Zn deficiency. This decrease resembled the decrease in CA activity, suggesting the possible involvement of the CA mRNA level in the regulation of CA activity.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号