首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasive species capable of recognizing potential predators may have increased establishment rates in novel environments. Individuals may retain historical predator recognition and invoke innate responses in the presence of taxonomically or ecologically similar predators, generalize antipredator responses, or learn to avoid risky species in novel environments. Invasive amphibians in aquatic environments often use chemical cues to assess predation risk and learn to avoid novel predators via direct experience and/or associated chemical cues. Ontogeny may also influence recognition; experience with predators may need to occur at certain developmental stages for individuals to respond correctly. We tested predator recognition in invasive American bullfrog ( Lithobates catesbeianus) tadpoles that varied in experience with fish predators at the population and individual scale. We found that bullfrog tadpoles responded to a historical predator, largemouth bass ( Micropterus salmoides), only if the population was locally sympatric with largemouth bass. Individuals from a population that did not co‐occur with largemouth bass did not increase refuge use in response to either largemouth bass chemical cues alone or chemical cues with diet cues (largemouth bass fed bullfrog tadpoles). To test whether this behavioral response was generalized across fish predators, we exposed tadpoles to rainbow trout ( Oncorhynchus mykiss) and found that tadpoles could not recognize this novel predator regardless of co‐occurrence with other fish species. These results suggest that environment may be more important for predator recognition than evolutionary history for this invasive species, and individuals do not retain predator recognition or generalize across fish predators.  相似文献   

2.
Antipredator behaviour is an important fitness component in most animals. A co-evolutionary history between predator and prey is important for prey to respond adaptively to predation threats. When non-native predator species invade new areas, native prey may not recognise them or may lack effective antipredator defences. However, responses to novel predators can be facilitated by chemical cues from the predators’ diet. The red swamp crayfish Procambarus clarkii is a widespread invasive predator in the Southwest of the Iberian Peninsula, where it preys upon native anuran tadpoles. In a laboratory experiment we studied behavioural antipredator defences (alterations in activity level and spatial avoidance of predator) of nine anurans in response to P. clarkii chemical cues, and compared them with the defences towards a native predator, the larval dragonfly Aeshna sp. To investigate how chemical cues from consumed conspecifics shape the responses, we raised tadpoles with either a tadpole-fed or starved crayfish, or dragonfly larva, or in the absence of a predator. Five species significantly altered their behaviour in the presence of crayfish, and this was largely mediated by chemical cues from consumed conspecifics. In the presence of dragonflies, most species exhibited behavioural defences and often these did not require the presence of cues from predation events. Responding to cues from consumed conspecifics seems to be a critical factor in facilitating certain behavioural responses to novel exotic predators. This finding can be useful for predicting antipredator responses to invasive predators and help directing conservation efforts to the species at highest risk.  相似文献   

3.
The ability of prey to respond to novel predator cues may depend on the generality or specificity of the response to predator cues. We used laboratory behavioral experiments to examine the ability of tadpoles of three species of anurans (American toad, Bufo americanus ; bullfrog, Rana catesbeiana ; and green frog, R. clamitans ) to respond to the presence of two native potential predators (bluegill, Lepomis macrochirus ; and largemouth bass, Micropterus salmoides ) and one non-native potential predator (goldfish, Carassius auratus ). We also examined the effect of tadpole size on the behavioral responses of American toads and green frogs to predator cues. All three species of tadpoles responded to the presence of predator cues, although the specific responses varied among species. American toads and green frogs reduced activity in the presence of at least some fish cues, but bullfrog tadpoles did not change their activity. Bullfrogs decreased use of vegetation in the presence of some predator cues, whereas American toads and green frogs did not. American toads only responded to the presence of bluegill cues but not the other fish predator cues, whereas bullfrogs and green frogs responded more generally to the fish predators. In both American toads and green frogs, tadpole size affected behavior. For American toads, activity increased, as did the use of the vegetated side of the aquarium, in larger tadpoles. Not only did size affect American toad behavior, but it also influenced the responses of the tadpoles to predator cues. For green frogs, activity decreased in larger tadpoles. Our results suggest that behavioral responses of tadpoles to predator cues can be influenced by both the identity of the predator and the prey, as well as the size of the potential prey.  相似文献   

4.
The introduction of non-native predators is thought to have important negative effects on native prey populations. The susceptibility of native prey to non-native or introduced predators may depend on their ability to respond appropriately to the presence of these non-native predators. We conducted a laboratory based behavioral experiment to examine the response of American toad (Bufo americanus) and bullfrog (Rana catesbeiana) tadpoles to the presence of cues from the introduced mosquitofish (Gambusia affinis), a potential tadpole predator. Neither the American toad tadpoles nor the bullfrog tadpoles responded behaviorally to the presence of mosquitofish cues. If tadpoles are unable to respond to the presence of mosquitofish cues appropriately, then their ability to avoid predation by mosquitofish may be compromised and this may contribute to the impacts of mosquitofish on some tadpole populations.  相似文献   

5.
Ranaviruses have been associated with most of the reported larval anuran die-offs in the United States. It is hypothesized that anthropogenically induced stress may increase pathogen prevalence in amphibian populations by compromising immunity. Cattle use of wetlands may stress resident tadpole populations by reducing water quality. We isolated a Ranavirus from green frog Rana clamitans (n = 80) and American bullfrog R. catesbeiana (n = 104) tadpoles collected at 5 cattle-access and 3 non-access wetlands on the Cumberland Plateau, Tennessee, USA. Sequencing confirmed Frog virus 3 (FV3); therefore, we compared its prevalence between tadpole populations inhabiting cattle-access and non-access wetlands, and among 3 seasons (winter, summer, and autumn) in 2005. We found FV3 in both tadpole species and cattle land-use types; however, prevalence of FV3 was greater in green frog tadpoles residing in cattle-access wetlands compared to those in non-access wetlands. No difference in FV3 prevalence was detected between cattle land uses for American bullfrog tadpoles. A seasonal trend in FV3 prevalence also existed, with prevalence greater in autumn and winter than in summer for both species. In addition, we found that FV3 prevalence decreased significantly as Gosner stage increased in American bullfrog tadpoles. No trend was detected between FV3 prevalence and developmental stage for green frog tadpoles. Our results suggest that cattle use of wetlands may increase prevalence of FV3 in Rana tadpoles, although this effect may depend on species, season, and tadpole developmental stage.  相似文献   

6.
Red swamp crayfish Procambarus clarkii, a widespread invasive alien crayfish, represents a serious threat for several freshwater species, including amphibians, which are declining at a global scale. As a shared coevolutionary history is the main factor determining the emergence of antipredator responses, Anuran tadpoles may not be able to cope effectively with this introduced predator. We performed two experiments to assess agile frog's (Rana dalmatina) defensive responses to both P. clarkii and native dragonfly larvae (Anax imperator). First, we conditioned embryos (collected from two ponds 30 km away from each other) with predators’ chemical cues to explore possible variation in hatching time caused by predation risk. In the second experiment, to evaluate how predators’ diet affects tadpole behavior, we conditioned tadpoles for a 5‐week period with cues from tadpole‐fed and gammarid‐fed predators and recorded behavioral and morphological responses. Embryos did not alter hatching time in the presence of any predator cue, while tadpoles from both populations strongly reduced activity and visibility when raised in the presence of tadpole‐fed dragonfly larvae. Morphological changes were less straightforward and were induced only in one population, for which broader tails and a slight increase in body size of tadpoles exposed to tadpole‐fed predators were observed. The lack of defensive responses in crayfish‐exposed tadpoles suggests that the spreading of this invasive species in agricultural lowlands of northern Italy may represent a further threat to their conservation.  相似文献   

7.
Currently no comparative studies exist on helminth and leech community structure among sympatric anuran tadpoles and salamander larvae. During June-August 2007-2009, we examined 50 bullfrog tadpoles, Rana catesbeiana , 50 barred tiger salamander larvae, Ambystoma mavortium , and 3 species of snails from Nevens Pond, Keith County, Nebraska for helminth and leech infections. The helminth and leech compound community of this larval amphibian assemblage consisted of at least 7 species, 4 in bullfrog tadpoles and 4 in barred tiger salamander larvae. Bullfrog tadpoles were infected with 2 species of nematodes ( Gyrinicola batrachiensis and Spiroxys sp.) and 2 types of metacercariae ( Telorchis sp. and echinostomatids), whereas barred tiger salamander larva were infected with 1 species of leech ( Placobdella picta ), 2 species of adult trematodes ( Telorchis corti and Halipegus sp.), and 1 species of an unidentified metacercaria. The component community of bullfrog tadpoles was dominated by helminths acquired through active penetration, or incidentally ingested through respiratory currents, or both, whereas the component community of larval salamanders was dominated by helminths acquired through ingestion of intermediate hosts (χ2 = 3,455.00, P < 0.00001). Differences in amphibian larval developmental time (2-3 yr for bullfrog tadpoles versus 2-5 mo for salamander larvae), the ephemeral nature of intermediate hosts in Nevens Pond, and the ability of bullfrog tadpole to eliminate echinostome infections had significant effects on mean helminth species richness among amphibian species and years (t = 12.31, P < 0.0001; t = 2.09, P = 0.04). Differences in herbivorous and carnivorous diet and time to metamorphosis among bullfrog tadpoles and barred tiger salamander larvae were important factors in structuring helminth communities among the larval stages of these 2 sympatric amphibian species, whereas size was important in structuring helminth and leech communities in larval salamanders, but not in bullfrog tadpoles.  相似文献   

8.
Peter Eklöv  Earl E. Werner 《Oikos》2000,88(2):250-258
This study examined the effects of multiple predators on size‐specific behavior and mortality of two species of anuran larvae. Particularly, we focused on how trait changes in predators and prey may be transmitted to other species in the food web. In laboratory experiments, we examined the effects of bluegill sunfish, Lepomis macrochirus, and the odonate larva Anax junius on behavior and mortality of tadpoles of the bullfrog, Rana catesbeiana, and the green frog R. clamitans. Experiments were conducted with predators alone and together to assess effects on behavior and mortality of the tadpoles. The experiments were replicated on five size classes of the tadpoles to evaluate how responses varied with body size.
Predation rates by Anax were higher on bullfrogs than on green frogs, and both bullfrogs and green frogs suffered greater mortality from Anax than from bluegill. Bluegill only consumed green frogs. Predation rates by both predators decreased with increasing tadpole size and decreased in the non‐lethal (caged) presence of the other predator. Both anuran larvae decreased activity when exposed to predators. Bullfrogs, however, decreased activity more in the presence of Anax than in the presence of bluegill, whereas green frogs decreased activity similarly in the presence of both predators. The largest size class of green frogs, but not of bullfrogs, exhibited spatial avoidance of bluegill. These responses were directly related to the risk posed by the different predators to each anuran species. Anax activity (speed and move frequency) also was higher when alone than in the non‐lethal presence of bluegill. We observed decreased predation rate of each predator in the non‐lethal presence of the other, apparently caused by two different mechanisms. Bluegill decreased Anax mortality on tadpoles by restricting the Anax activity. In contrast, Anax decreased bluegill mortality on tadpoles by reducing tadpole activity. We discuss how the activity and spatial responses of the tadpoles interact with palatability and body size to create different mortality patterns in the prey species and the implications of these results to direct and indirect interactions in this system.  相似文献   

9.
Predation threat-associated behavioral response was studied in Rana temporalis tadpoles to discover the importance of predators’ visual and chemical cues (kairomones and diet-derived metabolites of consumed prey) in evoking antipredator behavior. The caged predators (dragonfly larvae) fed on prey tadpoles or insects (Notonecta spp.) and water conditioned with the predators provided the threat stimuli to the tadpole prey. The predators’ visual cues were ineffective in evoking antipredator behaviors in the tadpole prey. However, exposure to caged tadpole-fed predators or water conditioned with tadpole-fed predators elicited predator avoidance behavior in the tadpoles; they stayed away from the predators, significantly reduced swimming activity (swimming time and distance traveled), and increased burst speed. Interestingly, exposure to water conditioned with starved predators did not elicit any antipredator behavior in the prey. Further, the antipredator responses of predator-experienced tadpoles were significantly greater than those exhibited by predator-na?ve tadpoles. The study shows that R. temporalis tadpoles assess predation threat based exclusively on chemical cues emanating from the predators’ dietary metabolites and that the inclusion of conspecific prey items in the diet of the predators is perceived as a threat. The study also shows that antipredator behavior in these tadpoles is innate and is enhanced during subsequent encounters with the predators.  相似文献   

10.
Predator‐induced phenotypic plasticity has been widely documented in response to native predators, but studies examining the extent to which prey can respond to exotic invasive predators are scarce. As native prey often do not share a long evolutionary history with invasive predators, they may lack defenses against them. This can lead to population declines and even extinctions, making exotic predators a serious threat to biodiversity. Here, in a community‐wide study, we examined the morphological and life‐history responses of anuran larvae reared with the invasive red swamp crayfish, Procambarus clarkii, feeding on conspecific tadpoles. We reared tadpoles of nine species until metamorphosis and examined responses in terms of larval morphology, growth, and development, as well as their degree of phenotypic integration. These responses were compared with the ones developed in the presence of a native predator, the larval dragonfly Aeshna sp., also feeding on tadpoles. Eight of the nine species altered their morphology or life history when reared with the fed dragonfly, but only four when reared with the fed crayfish, suggesting among‐species variation in the ability to respond to a novel predator. While morphological defenses were generally similar across species (deeper tails) and almost exclusively elicited in the presence of the fed dragonfly, life‐history responses were very variable and commonly elicited in the presence of the invasive crayfish. Phenotypes induced in the presence of dragonfly were more integrated than in crayfish presence. The lack of response to the presence of the fed crayfish in five of the study species suggests higher risk of local extinction and ultimately reduced diversity of the invaded amphibian communities. Understanding how native prey species vary in their responses to invasive predators is important in predicting the impacts caused by newly established predator–prey interactions following biological invasions.  相似文献   

11.
P. Eklöv 《Oecologia》2000,123(2):192-199
Chemical signals are used as information by prey to assess predation risk in their environment. To evaluate the effects of multiple predators on prey growth, mediated by a change in prey activity, I exposed small and large bullfrog (Rana catesbeiana) larvae (tadpoles) to chemical cues from different combinations of bluegill sunfish (Lepomis macrochirus) and larval dragonfly (Anax junius) predators. Water was regularly transferred from predation trials (outdoor experiment) to aquaria (indoor experiment) in which activity and growth of tadpoles was measured. The highest predation mortality of small bullfrog larvae in the outdoor experiment was due to Anax, and it was slightly lower in the presence of both predators, probably resulting from interactions between predators. There was almost no mortality of prey with bluegill. The activity and growth of small bullfrog larvae was highest in the absence of predators and lowest in the presence of Anax. In the presence of bluegill only, or with both predators, the activity and growth of small bullfrog tadpoles was intermediate. Predators did not affect large tadpole activity and growth. Regressing mortality of small bullfrog tadpoles against activity and growth of bullfrog tadpoles revealed a significant effect for small bullfrog larvae but a non-significant effect for large bullfrog larvae. This shows that the response of bullfrog tadpoles to predators is related to their own body size. The experiment demonstrates that chemical cues are released both as predator odor and as alarm substances and both have the potential to strongly alter the activity and growth of prey. Different mechanisms by which chemical cues may be transmitted to species interactions in the food web are discussed. Received: 28 June 1999 / Accepted: 15 November 1999  相似文献   

12.
Laurila A  Pakkasmaa S  Merilä J 《Oecologia》2006,147(4):585-595
Growth and development rates often differ among populations of the same species, yet the factors maintaining this differentiation are not well understood. We investigated the antipredator defences and their efficiency in two moor frog Rana arvalis populations differing in growth and development rates by raising tadpoles in outdoor containers in the nonlethal presence and absence of three different predators (newt, fish, dragonfly larva), and by estimating tadpole survival in the presence of free-ranging predators in a laboratory experiment. Young tadpoles in both populations reduced activity in the presence of predators and increased hiding behaviour in the presence of newt and fish. Older tadpoles from the slow-growing Gotland population (G) had stronger hiding behaviour and lower activity in all treatments than tadpoles from the fast-growing Uppland population (U). However, both populations showed a plastic behavioural response in terms of reduced activity. The populations differed in induced morphological defences especially in response to fish. G tadpoles responded with relatively long and deep body, short tail and shallow tail muscle, whereas the responses in U tadpoles were often the opposite and closer to the responses induced by the other predators. U tadpoles metamorphosed earlier, but at a similar size to G tadpoles. There was no evidence that growth rate was affected by predator treatments, but tadpoles metamorphosed later and at larger size in the predator treatments. G tadpoles survived better in the presence of free-ranging predators than U tadpoles. These results suggest that in these two populations, low growth rate was linked with low activity and increased hiding, whereas high growth rate was linked with high activity and less hiding. The differences in behaviour may explain the difference in survival between the populations, but other mechanisms (i.e. differences in swimming speed) may also be involved. There appears to be considerable differentiation in antipredator responses between these two R. arvalis populations, as well as with respect to different predators.  相似文献   

13.
Carry-over effects influence trait responses in later life stages as a result of early experience with environmental cues. Predation risk is an influential stressor and selection exists for early recognition of threats. In particular, invasive species may benefit from carry-over effects by preemptively recognizing and responding to novel predators via latent developmental changes and embryonic learning. In a factorial experiment, we conditioned invasive American bullfrog embryos (Lithobates catesbeianus) to the odor of a novel fish predator, largemouth bass (Micropterus salmoides) alone or in combination with injured conspecific cues. We quantified developmental carryover in the larval life stage and found that individuals conditioned to the highest risk (fish and injured conspecific cues) grew into longer bodied larvae relative to larvae from lower risk treatments. We also assessed embryonic learning, a behavioral carry-over effect, and found an interaction between embryonic conditioning and larval exposure. Behavioral responses were only found in scenarios when predation risk varied in intensity across life history stages, thus requiring a more flexible antipredator strategy. This indicates a potential trade-off between the two strategies in larval growth and development rates, and time until metamorphosis. Our results suggest that early predator exposure and carry-over effects have significant impacts on life history trajectories for American bullfrogs. This research contributes to our understanding of a potentially important invasion mechanism in an anuran species of conservation concern.  相似文献   

14.
15.
Animals often alter their behaviour, morphology and physiology in the presence of predators. These induced defences can be fine‐tuned by a variety of environmental factors such as predator species, acute predation risk or food availability. It has, however, remained unclear what cues influence the extent and quality of induced defences and how the information content of these cues interact to determine the development of antipredator defences. We performed an experiment to study the significance of direct chemical cues, originating from the predators themselves, and indirect cues, released by attacked or consumed prey, for phenotypic responses in Rana dalmatina tadpoles. We reared tadpoles in the presence of caged predators (Triturus vulgaris, Aeshna cyanea) fed either one or three tadpoles every other day outside the tadpole‐rearing tanks. Fifteen hours after food provisioning, predators were put back into the tanks containing focal tadpoles either after washing (direct + digestion‐released cues) or with the water containing remnants of the prey (direct + all types of indirect cues). Our results suggest that direct cues together with digestion‐released cues can be sufficient to induce strong antipredator responses. Induced defences depended on both direct cues, affecting predator‐specific responses, and the quantity of indirect cues, resulting in graded responses to differences in predation threat. Moreover, direct and indirect cues interacted in behaviour, resulting in predator‐specific graded responses. We also observed a decrease in the extent of predator‐induced responses in large tadpoles as compared to small ones. Our results, thus, suggest that prey integrate multiple cues about predators to optimize induced defences and that this process changes during ontogeny.  相似文献   

16.
Björn Lardner 《Oikos》2000,88(1):169-180
Amphibian larvae often face two major sources of mortality: pond desiccation and predation. Tadpoles of seven anuran species with different preferences for type of breeding habitat, on a hydroperiod scale, were tested for responses to the presence of predators by raising them experimentally in the presence and absence of a separately caged invertebrate predator that was fed on conspecific tadpoles. The species typically breeding in temporary or semi-permanent ponds ( Rana temporaria , Rana arvalis , Rana dalmatina and Hyla arborea ) – where invertebrate predator populations are predicted to vary considerably spatiotemporally – all showed marked induced increases in tail fin depth in response to predator presence. These species also tended to respond by reduced growth rates. The representative of the most ephemeral habitats, Bufo calamita , did not respond in any of these traits. Its congeneric, Bufo bufo , a toxic inhabitant of permanent ponds and lakes, tended to respond to predator presence by reducing its growth rate, though not by a tail depth increase. I argue that the rather poor swimming performance in Bufo tadpoles may opt for defences other than locomotor ability. The palatable, permanent pond species Pelobates fuscus did not alter either its growth rate or tail morphology. Possible explanations for this result are discussed.  相似文献   

17.
The introduction of predator species into new habitats is an increasingly common consequence of human activities, and the persistence of native prey species depends upon their response to these novel predators. In this study, we examined whether the Largespring mosquitofish, Gambusia geiseri exhibited antipredator behavior and/or an elevation of circulating stress hormones (cortisol) to visual and chemical cues from a native predator, a novel predator, or a non‐predatory control fish. Prey showed the most pronounced antipredator response to the native predator treatment, by moving away from the stimulus, while the prey showed no significant changes in their vertical or horizontal position in response to the novel or non‐predator treatments. We also found no significant difference in water‐borne cortisol release rates following any of the treatments. Our results suggest the prey did not recognize and exhibit antipredator behavior to the novel predator, and we infer that this predator species could be detrimental if it expands into the range of this prey species. Further, our study demonstrates prey may not respond to an invasive predator that is phylogenetically, behaviorally, and morphologically dissimilar from the prey species' native predators.  相似文献   

18.
According to the threat-sensitive predator avoidance hypothesis, the intensity of a prey animal's antipredator response should reflect its vulnerability to a specific predator. In laboratory experiments, we observed the intensity of antipredator responses of Pacific treefrog ( Hyla regilla ) tadpoles to stimuli from caged larval northwestern salamander ( Ambystoma gracile ) predators. We varied the sizes of the tadpoles relative to the salamanders in an attempt to create differences in vulnerability of tadpoles to the salamander predators. After documenting the response of the tadpoles to the caged predator, we tested the tadpole's vulnerability to the predator by releasing the tadpole with the predator. We observed that as the relative size of the tadpoles to the caged salamanders increased, the antipredator response of the tadpoles decreased. These changes in behaviour closely mirrored changes in actual vulnerability to the predator. Our results provide experimental support for the threat-sensitive predator avoidance hypothesis.  相似文献   

19.
Invasive predators have been widely regarded as one of the principle drivers of the global decline of amphibians, which are among the most threatened vertebrate taxon on Earth. The American bullfrog(Lithobates catesbeianus) is identified as one of the most successful vertebrate invaders and has caused the decline or extinction of some native amphibians in many regions and countries including China. Based on field surveys and stomach content analyses, we examined the diet composition of the invasive bullfrog for the first time in two invaded populations in Yunnan Province, southwestern China, a region of global conservation priority, during the breeding season from 2008 to 2014. Additionally, we conducted the first quantitative study on the prey selection of this global invader among their invaded ranges after controlling for the local anuran assemblage and other aquatic preys in the environment. Our results showed that the range of food items in the stomachs of bullfrogs spanned more than 30 species belonging to ten taxonomic classes. Both of post-metamorphosis individuals and juveniles preyed upon native frogs, independent of the bullfrog's body size and mouth width. Importantly, Jacobs' selection index showed a bullfrog preference for the Yunnan pond frog(Babina pleuraden), one native endemic anuran with population decline, in terms of both food volume and occurrence. We therefore provided direct evidence on the predation impact of the invasive bullfrog on an endemic anuran and urged further efforts to prevent the dispersal of this invader into more fragile habitats to reduce their negative impacts on native amphibians.  相似文献   

20.
The predatory behavior of invasive species can affect their ecological impact, and offer opportunities for targeted control. In Australia, tadpoles of invasive cane toads(Rhinella marina) do not consume eggs of native anurans, but are strongly attracted to(and consume) newly-laid eggs of conspecifics; chemical cues from such eggs(or adult secretions) thus can be used to attract toad tadpoles to traps. Do other invasive anurans show similar selectivity? Our laboratory trials on a Chinese population of invasive American bullfrogs(Lithobates catesbeianus) revealed similar behaviors as exhibited by Australian cane toads. Bullfrog tadpoles rarely consumed the eggs of native anurans, but were attracted to both bullfrog eggs and bullfrog skin secretions. Although the attraction response was less intense in bullfrogs than in cane toads, it might nonetheless enable selective removal of bullfrog tadpoles from invaded sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号