首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Aims: In this work, we aimed to identify an effective treatment of infections caused by Enterococcus spp. strains resistant to conventional antibiotics. Methods and Results: We report the isolation and characterization of a new lytic bacteriophage, designated bacteriophage EFAP‐1, that is capable of lysing Enterococcus faecalis bacteria that exhibit resistance to multiple antibiotics. EFAP‐1 has low sequence similarity to all known bacteriophages. Transmission electron microscopy confirmed that EFAP‐1 belongs to the Siphoviridae family. A putative lytic protein of EFAP‐1, endolysin EFAL‐1, is encoded in ORF 2 and was expressed in Escherichia coli. Recombinant EFAL‐1 had broad‐spectrum lytic activity against several Gram‐positive pathogens, including Ent. faecalis and Enterococcus faecium. Conclusions: The complete genome sequence of the newly isolated enterococcal lytic phage was analysed, and it was demonstrated that its recombinant endolysin had broad lytic activity against various Gram‐positive pathogens. Significance and Impact of the Study: Bacteriophage EFAP‐1 and its lytic protein, EFAL‐1, can be utilized as potent antimicrobial agents against Enterococcus spp. strains resistant to conventional antibiotics in hospital infections and also as environmental disinfectants to control disease‐causing Enterococcus spp. in dairy farms.  相似文献   

2.
通过重组技术获得大肠埃希菌噬菌体内溶素纯化蛋白和表面展示噬菌体,并观察产物的生物效应。将肠侵袭性大肠埃希菌EIEC 8401噬菌体LSB-1内溶素基因gp17构建到质粒pET300中,并在大肠埃希菌BL21中诱导表达,通过Ni柱纯化系统纯化产物;利用噬菌体展示技术构建T7-LSB-gp17重组噬菌体,通过双层琼脂法纯化噬菌体,并观察2种产物的抗菌效应。2 139 bp的gp17基因通过重组技术表达出78.3 ku的可溶性蛋白,纯化后浓度为2.38 mg/mL,其对EIEC8401有良好的抑菌活性,但对其他试验菌无抗性;通过噬菌体展示技术构建的重组噬菌体T7-LSB-gp17通过SDS-PAGE电泳显示在78 ku处有表达增强,对EIEC8401无感染、裂解作用,但对EIEC8401及其他试验菌有明显溶菌作用,宿主谱增加。通过重组技术获得的噬菌体LSB-1内溶素基因gp17的产物对LSB-1噬菌体原宿主具有明显的抑制效应。其中gp17表达的纯化蛋白具有明显的宿主专一性,重组噬菌体悬液有较宽种类的抗菌作用。这可能是因为gp17蛋白与噬菌体表面复杂空间结构的相互作用产生的生物效应。  相似文献   

3.
Actinobacteria, which are the prolific producers of antibiotics and significant suppliers to the pharmaceutical industry, can produce a wide variety of bioactive metabolites. An actinomycete strain designated NLKPB45 was isolated from mangrove soils samples of Nellore coastal regions Andhra Pradesh and assessed for antibiotic production and activity against pathogenic bacteria. From a total of 9 mangrove soil samples, 143 acinomycetes were isolated. Among the isolated them 6 actinomycetes strains showed potential antibacterial activity against at two tested pathogens gram positive and gram negative bacteria E. coli and S. aureus. The potent strain NLKPB45 was identified by 16S gene isolation and sequencing to the Streptomyces genus. The ethyl acetate extracts also as shown excellent antimicrobial activity against Salmonella sp., staphylococcus aureus, E. coli, and B. subtilus were detected in both the supernatant extract samples from fermentations of culture NLKPB45. The anticancer activity of extracts in the HeLa with IC50 value of 37.1924 μg/ml, MCF-7 IC50 value of 40.9177 μg/ml and HT 29 IC50 value of 43.3758 μg/ml.  相似文献   

4.
Chicken colibacillosis is caused by some pathogenic Escherichia coli strains. Thirty-five pathogenic antibiotic-resistant E. coli strains were used in the host range detection of bacteriophage Bp7. The phage showed a wide range of E. coli hosts (46%). The complete genome of bacteriophage Bp7 was sequenced, assembled, and analyzed. The results revealed a linear double-stranded DNA sequence of 168,066 bp harboring 791 open reading frames. The major findings from its annotation are described.  相似文献   

5.
Directed evolution is defined as a method to harness natural selection in order to engineer proteins to acquire particular properties that are not associated with the protein in nature. Literature has provided numerous examples regarding the implementation of directed evolution to successfully alter molecular specificity and catalysis1. The primary advantage of utilizing directed evolution instead of more rational-based approaches for molecular engineering relates to the volume and diversity of variants that can be screened2. One possible application of directed evolution involves improving structural stability of bacteriolytic enzymes, such as endolysins. Bacteriophage encode and express endolysins to hydrolyze a critical covalent bond in the peptidoglycan (i.e. cell wall) of bacteria, resulting in host cell lysis and liberation of progeny virions. Notably, these enzymes possess the ability to extrinsically induce lysis to susceptible bacteria in the absence of phage and furthermore have been validated both in vitro and in vivo for their therapeutic potential3-5. The subject of our directed evolution study involves the PlyC endolysin, which is composed of PlyCA and PlyCB subunits6. When purified and added extrinsically, the PlyC holoenzyme lyses group A streptococci (GAS) as well as other streptococcal groups in a matter of seconds and furthermore has been validated in vivo against GAS7. Significantly, monitoring residual enzyme kinetics after elevated temperature incubation provides distinct evidence that PlyC loses lytic activity abruptly at 45 °C, suggesting a short therapeutic shelf life, which may limit additional development of this enzyme. Further studies reveal the lack of thermal stability is only observed for the PlyCA subunit, whereas the PlyCB subunit is stable up to ~90 °C (unpublished observation). In addition to PlyC, there are several examples in literature that describe the thermolabile nature of endolysins. For example, the Staphylococcus aureus endolysin LysK and Streptococcus pneumoniae endolysins Cpl-1 and Pal lose activity spontaneously at 42 °C, 43.5 °C and 50.2 °C, respectively8-10. According to the Arrhenius equation, which relates the rate of a chemical reaction to the temperature present in the particular system, an increase in thermostability will correlate with an increase in shelf life expectancy11. Toward this end, directed evolution has been shown to be a useful tool for altering the thermal activity of various molecules in nature, but never has this particular technology been exploited successfully for the study of bacteriolytic enzymes. Likewise, successful accounts of progressing the structural stability of this particular class of antimicrobials altogether are nonexistent. In this video, we employ a novel methodology that uses an error-prone DNA polymerase followed by an optimized screening process using a 96 well microtiter plate format to identify mutations to the PlyCA subunit of the PlyC streptococcal endolysin that correlate to an increase in enzyme kinetic stability (Figure 1). Results after just one round of random mutagenesis suggest the methodology is generating PlyC variants that retain more than twice the residual activity when compared to wild-type (WT) PlyC after elevated temperature treatment.  相似文献   

6.
Nowadays, the researchers make a big effort to find new alternatives to overcome bacterial drug resistance. One option is the application of bacteriophage endolysins enable to degrade peptidoglycan (PG) what in consequence leads to bacterial cell lysis. In this study we examine phage KP27 endolysin mixed with poly(propyleneimine) dendrimers to evaluate an antimicrobial effect against Pseudomonas aeruginosa. Polycationic compounds destabilize bacterial outer membrane (OM) helping endolysins to gain access to PG. We found out that not only bacterial lipopolysaccharide (LPS) is the main hindrance for highly charged cationic dendrimers to disrupt OM and make endolysin reaching the target but also the dendrimer surface modification. The reduction of a positive charge and concentration in maltose poly(propyleneimine) dendrimers significantly increased an antibacterial effect of endolysin. The application of recombinant lysins against Gram-negative bacteria is one of the future therapy options, thus OM permeabilizers such as cationic dendrimers may be of high interest to be combined with PG-degrading enzymes.  相似文献   

7.
In order to determine the existence of synergism, the bacteriostatic action of flavonoids against Escherichia coli ATCC 25 922 between dihydroxylated chalcones and a clinically interesting conventional antibiotic, binary combinations of 2′,3-dihydroxychalcone, 2′,4-dihydroxychalcone and 2′,4′-dihydroxychalcone with nalidixic acid and its ternary combinations with rutin (inactive flavonoid) were assayed against this Gram negative bacterium. Using a kinetic-turbidimetric method, growth kinetics were monitored in broths containing variable amounts of dihydroxychalcone alone, combinations of dihydroxychalcone variable concentration–nalidixic acid constant concentration and dihydroxychalcone variable concentration–nalidixic acid constant concentration–rutin constant concentration, respectively. The minimum inhibitory concentrations of dihydroxychalcones alone and its binary and ternary combinations were evaluated. All chalcones, and their binary and ternary combinations showed antibacterial activity, being rutin an excellent synergizing for the dihydroxychalcone–nalidixic acid binary combination against E. coli ATCC 25 922. Thus, this synergistic effect is an important way that could lead to the development of new combination antibiotics against infections caused by E. coli.  相似文献   

8.
We here characterize five globular endolysins, encoded by a set of Gram-negative infecting bacteriophages: BcepC6gp22 (Burkholderia cepacia phage BcepC6B), P2gp09 (Escherichia coli phage P2), PsP3gp10 (Salmonella enterica phage PsP3), K11gp3.5 and KP32gp15 (Klebsiella pneumoniae phages K11 and KP32, respectively). In silico, BcepC6gp22, P2gp10 and PsP3gp10 are predicted to possess lytic transglycosylase activity, whereas K11gp3.5 and KP32gp15 have putative amidase activity. All five endolysins show muralytic activity on the peptidoglycan of several Gram-negative bacterial species. In vitro, Pseudomonas aeruginosa PAO1 is clearly sensitive for the antibacterial action of the five endolysins in the presence of the outer membrane permeabilizer EDTA: reductions are ranging from 1.89 to 3.08 log units dependent on the endolysin. The predicted transglycosylases BcepC6gp22, P2gp10 and PsP3gp10 have a substantially higher muralytic and in vitro antibacterial activity compared to the predicted amidases K11gp3.5 and KP32gp15, highlighting the impact of the catalytic specificity on endolysin activity. Furthermore, initial data exclude the synergistic lethal effect of a combination of the predicted transglycosylase PsP3gp10 and the predicted amidase K11gp3.5 on PAO1. As these globular endolysins show a lower enzymatic and antibacterial activity, in comparison to modular endolysins, we suggest that the latter should be favored for antibacterial applications.  相似文献   

9.
Despite the wide range of available antibiotics, food borne bacteria demonstrate a huge spectrum of resistance. The current study aims to use natural components such as essential oils (EOs), chitosan, and nano-chitosan that have very influential antibacterial properties with novel technologies like chitosan solution/film loaded with EOs against multi-drug resistant bacteria. Two strains of Escherichia coli O157:H7 and three strains of Listeria monocytogenes were used to estimate antibiotics resistance. Ten EOs and their mixture, chitosan, nano-chitosan, chitosan plus EO solutions, and biodegradable chitosan film enriched with EOs were tested as antibacterial agents against pathogenic bacterial strains. Results showed that E. coli O157:H7 51,659 and L. monocytogenes 19,116 relatively exhibited considerable resistance to more than one single antibiotic. Turmeric, cumin, pepper black, and marjoram did not show any inhibition zone against L. monocytogenes; Whereas, clove, thyme, cinnamon, and garlic EOs exhibited high antibacterial activity against L. monocytogenes with minimum inhibitory concentration (MIC) of 250–400 μl 100?1 ml and against E. coli O157:H7 with an MIC of 350–500 μl 100?1 ml, respectively. Among combinations, clove, and thyme EOs showed the highest antibacterial activity against E. coli O157:H7 with MIC of 170 μl 100?1 ml, and the combination of cinnamon and clove EOs showed the strongest antibacterial activity against L. monocytogenes with an MIC of 120 μl 100?1 ml. Both chitosan and nano-chitosan showed a promising potential as an antibacterial agent against pathogenic bacteria as their MICs were relatively lower against L. monocytogenes than for E. coli O157:H7. Chitosan combined with each of cinnamon, clove, and thyme oil have a more effective antibacterial activity against L. monocytogenes and E. coli O157:H7 than the mixture of oils alone. Furthermore, the use of either chitosan solution or biodegradable chitosan film loaded with a combination of clove and thyme EOs had the strongest antibacterial activity against L. monocytogenes and E. coli O157:H7. However, chitosan film without EOs did not exhibit an inhibition zone against the tested bacterial strains.  相似文献   

10.
Escherichia coli RNase BN, a member of the RNase Z family of endoribonucleases, differs from other family members in that it also can act as an exoribonuclease in vitro. Here, we examine whether this activity of RNase BN also functions in vivo. Comparison of the x-ray structure of RNase BN with that of Bacillus subtilis RNase Z, which lacks exoribonuclease activity, revealed that RNase BN has a narrower and more rigid channel downstream of the catalytic site. We hypothesized that this difference in the putative RNA exit channel might be responsible for the acquisition of exoribonuclease activity by RNase BN. Accordingly, we generated several mutant RNase BN proteins in which residues within a loop in this channel were converted to the corresponding residues present in B. subtilis RNase Z, thus widening the channel and increasing its flexibility. The resulting mutant RNase BN proteins had reduced or were essentially devoid of exoribonuclease activity in vitro. Substitution of one mutant rbn gene (P142G) for wild type rbn in the E. coli chromosome revealed that the exoribonuclease activity of RNase BN is not required for maturation of phage T4 tRNA precursors, a known specific function of this RNase. On the other hand, removal of the exoribonuclease activity of RNase BN in a cell lacking other processing RNases leads to slower growth and affects maturation of multiple tRNA precursors. These findings help explain how RNase BN can act as both an exo- and an endoribonuclease and also demonstrate that its exoribonuclease activity is capable of functioning in vivo, thus widening the potential role of this enzyme in E. coli.  相似文献   

11.
Accumulation of the microtubule-associated protein tau is associated with Alzheimer''s disease (AD). In AD brain, tau is abnormally phosphorylated at many sites, and phosphorylation at Ser-262 and Ser-356 plays critical roles in tau accumulation and toxicity. Microtubule affinity–regulating kinase 4 (MARK4) phosphorylates tau at those sites, and a double de novo mutation in the linker region of MARK4, ΔG316E317D, is associated with an elevated risk of AD. However, it remains unclear how this mutation affects phosphorylation, aggregation, and accumulation of tau and tau-induced neurodegeneration. Here, we report that MARK4ΔG316E317D increases the abundance of highly phosphorylated, insoluble tau species and exacerbates neurodegeneration via Ser-262/356–dependent and –independent mechanisms. Using transgenic Drosophila expressing human MARK4 (MARK4wt) or a mutant version of MARK4 (MARK4ΔG316E317D), we found that coexpression of MARK4wt and MARK4ΔG316E317D increased total tau levels and enhanced tau-induced neurodegeneration and that MARK4ΔG316E317D had more potent effects than MARK4wt. Interestingly, the in vitro kinase activities of MARK4wt and MARK4ΔG316E317D were similar. When tau phosphorylation at Ser-262 and Ser-356 was blocked by alanine substitutions, MARK4wt did not promote tau accumulation or exacerbate neurodegeneration, whereas coexpression of MARK4ΔG316E317D did. Both MARK4wt and MARK4ΔG316E317D increased the levels of oligomeric forms of tau; however, only MARK4ΔG316E317D further increased the detergent insolubility of tau in vivo. Together, these findings suggest that MARK4ΔG316E317D increases tau levels and exacerbates tau toxicity via a novel gain-of-function mechanism and that modification in this region of MARK4 may affect disease pathogenesis.  相似文献   

12.
Raw milk is one of the most important vehicles for transmitting various pathogens, especially Escherichia coli (E. coli). Multidrug-resistant pathogens are highly prevalent among mastitic cows in various dairy farms worldwide. Therefore, our current study is based on the identification of E. coli from mastitic cow’s milk and their resistance to various antibacterial agents. As well, the impact of camel’s urine on multi-drug resistant E. coli were also evaluated. Thirty-three E. coli isolates were recovered from 254 milk samples. All strains were initially identified phenotypically by culturing on specific media and Vitek 2 Compact System. The protein fingerprinting technique was used as a confirmatory method. The Stx1, Stx2 and eae genes were also verified by polymerase chain reaction (PCR). The antimicrobial resistance of E. coli strains was tested by the Vitek 2 AST-GN69 cards. Thirty multi-drug resistant E. coli strains (20 from mastitic milk and 10 from clinical samples) were laboratory tested with different concentrations (100%, 75%, 50% and 25%) of virgin and breeding camel’s urine, using the paper disc diffusion method. Our findings showed that 93.94% of E. coli strains were recognized by the Vitek™ 2 system. The results of proteomic investigation illustrated that 100% of E. coli strains were identified at log values ≥2.00. The genotypic identification of the three virulence genes illustrated that 90.1%, 63.64%, and 30.55% of E. coli strains were able to carry the Stx1, eae, and Stx2 genes, respectively. Most strains of E. coli showed strong resistance against cefazolin (78.79%), ceftazidime (66.67%), cefotaxime (60.61%), ceftriaxone (54.55%), and cefepime (39.40%). The results of the antibacterial effect of camel’s urine revealed that the mean inhibitory zones of virgin camel’s urine were 28 mm, 17 mm, and 14 mm, for the concentrations of 100%, 75%, and 50%, respectively. Whereas; the inhibitory zones for the breeding camel’s urine were 18 mm, 0 mm, and 0 mm, for the concentrations of 100%, 75%, and 50%, respectively. We concluded that the majority of E. coli strains were able to harbor some virulence genes and resist many antibiotics. Our study also provided a robust evidence that the camel’s urine, particularly from the virgin camels has robust antimicrobial activity against multidrug-resistant E. coli strains.  相似文献   

13.
A previously characterized O157-specific lytic bacteriophage KH1 and a newly isolated phage designated SH1 were tested, alone or in combination, for reducing intestinal Escherichia coli O157:H7 in animals. Oral treatment with phage KH1 did not reduce the intestinal E. coli O157:H7 in sheep. Phage SH1 formed clear and relatively larger plaques on lawns of all 12 E. coli O157:H7 isolates tested and had a broader host range than phage KH1, lysing O55:H6 and 18 of 120 non-O157 E. coli isolates tested. In vitro, mucin or bovine mucus did not inhibit bacterial lysis by phage SH1 or KH1. A phage treatment protocol was optimized using a mouse model of E. coli O157:H7 intestinal carriage. Oral treatment with SH1 or a mixture of SH1 and KH1 at phage/bacterium ratios ≥102 terminated the presence of fecal E. coli O157:H7 within 2 to 6 days after phage treatment. Untreated control mice remained culture positive for >10 days. To optimize bacterial carriage and phage delivery in cattle, E. coli O157:H7 was applied rectally to Holstein steers 7 days before the administration of 1010 PFU SH1 and KH1. Phages were applied directly to the rectoanal junction mucosa at phage/bacterium ratios calculated to be ≥102. In addition, phages were maintained at 106 PFU/ml in the drinking water of the phage treatment group. This phage therapy reduced the average number of E. coli O157:H7 CFU among phage-treated steers compared to control steers (P < 0.05); however, it did not eliminate the bacteria from the majority of steers.  相似文献   

14.
To determine the function of the C-terminal region of Bacillus amyloliquefaciens phage endolysin on Pseudomonas aeruginosa lysis, the permeabilization of the outer membrane of P. aeruginosa was analyzed. Glu-15 to His (E15H) and Thr-32 to Glu (T32E) substitutions were introduced into the Bacillus phage endolysin. Neither E15H nor T32E substitution induced enzymatic and antibacterial activities. These two, Glu-15 and Thr-32, were considered to be the active center of the enzyme. The addition of purified E15H and T32E proteins to P. aeruginosa cells induced the release of periplasmic -lactamase from the cells, indicating that both proteins enhance permeabilization of the outer membrane. However, the addition of E15H and T32E proteins to P. aeruginosa cells did not induce the release of cytoplasmic ATP from the cells. These results indicate that the antibacterial activity of the endolysin requires both the C-terminal enhancement of the permeabilization of the P. aeruginosa outer membrane and N-terminal enzymatic activity.  相似文献   

15.
The gene for new Rhodococcus erythropolis TA37 acylamidase, which possesses unique substrate specificity, has been cloned and expressed in E. coli. Substrates for this enzyme are not only simple amides, such as acetamide and propionamide, but also N-substituted amides, such as 4′-nitroacetanilide. The 1431-bp gene was expressed in E. coli BL21 (DE3) cells on pET16b plasmid under the control of a promoter of the ? 10 gene from the T7 phage. The molecular mass of recombinant acylamidase in E. coli was 55 kDa, which corresponded to that of native acylamidase from Rhodococcus erythropolis TA37. Recombinant acylamidase was able to hydrolize N-substituted amides. A search of a nucleotide database and multiple alignment revealed that acylamidase belonged to the Amidase protein family PF01425, but its nucleotide and amino acid sequences differed significantly from those of the described amidases.  相似文献   

16.
CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)3Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo.  相似文献   

17.
We investigated the role of the T4D bacteriophage gene 28 product in folate metabolism in infected Escherichia coli cells by using antifolate drugs and a newly devised assay for folyl polyglutamate cleavage activity. Preincubation of host E. coli cells with various sulfa drugs inhibited phage production by decreasing the burst size when the phage particles produced an altered gene 28 product (i.e., after infection under permissive conditions with T4D 28ts or T4D am28). In addition, we found that another folate analog, pyrimethamine, also inhibited T4D 28ts production and T4D 28am production, but this analog did not inhibit wild-type T4D production. A temperature-resistant revertant of T4D 28ts was not sensitive to either sulfa drugs or pyrimethamine. We developed an assay to measure the enzymatic cleavage of folyl polyglutamates. The high-molecular-weight folyl polyglutamate substrate was isolated from E. coli B cells infected with T4D am28 in the presence of labeled glutamic acid and was characterized as a folate compound containing 12 to 14 labeled glutamate residues. Extracts of uninfected bacteria liberated glutamate residues from this substrate with a pH optimum of 8.4 to 8.5. Extracts of bacteriophage T4D-infected E. coli B cells exhibited an additional new folyl polyglutamate cleavage activity with a pH optimum of about 6.4 to 6.5, which was clearly distinguished from the preexisting activity in the uninfected host cells. This new activity was induced in E. coli B cells by infection with wild-type T4D and T4D amber mutants 29, 26, 27, 51, and 10, but it was not induced under nonpermissive conditions by T4D am28 or by T4D 28ts. Mutations in gene 28 affected the properties of the induced cleavage enzyme. Wild-type T4D-induced cleavage activity was not inhibited by pyrimethamine, whereas the T4D 28ts activity induced at a permissive temperature was inhibited by this folate analog. Folyl polyglutamate cleavage activity characteristic of the activity induced in host cells by wild-type T4D or by T4D gene 28 mutants was also found in highly purified preparations of these phage ghost particles. The T4D-induced cleavage activity could be inhibited by antiserum prepared against highly purified phage baseplates. We concluded that T4D infection induced the formation of a new folyl polyglutamate cleavage enzyme and that this enzyme was coded for by T4D gene 28. Furthermore, since this gene product was a baseplate tail plug component which had both its antigenic sites and its catalytic sites exposed on the phage particle, it was apparent that this enzyme formed part of the distal surface of the phage baseplate central tail plug.  相似文献   

18.
Myxobacteria are predatory and are prolific producers of secondary metabolites. Here, we tested a hypothesized role that secondary metabolite antibiotics function as weapons in predation. To test this, a Myxococcus xanthus Δta1 mutant, blocked in antibiotic TA (myxovirescin) production, was constructed. This TA mutant was defective in producing a zone of inhibition (ZOI) against Escherichia coli. This shows that TA is the major M. xanthus-diffusible antibacterial agent against E. coli. Correspondingly, the TA mutant was defective in E. coli killing. Separately, an engineered E. coli strain resistant to TA was shown to be resistant toward predation. Exogenous addition of spectinomycin, a bacteriostatic antibiotic, rescued the predation defect of the TA mutant. In contrast, against Micrococcus luteus the TA mutant exhibited no defect in ZOI or killing. Thus, TA plays a selective role on prey species. To extend these studies to other myxobacteria, the role of antibiotic corallopyronin production in predation was tested and also found to be required for Corallococcus coralloides killing on E. coli. Next, a role of TA production in myxobacterial fitness was assessed by measuring swarm expansion. Here, the TA mutant had a specific swarm rate reduction on prey lawns, and thus reduced fitness, compared to an isogenic TA+ strain. Based on these observations, we conclude that myxobacterial antibiotic production can function as a predatory weapon. To our knowledge, this is the first report to directly show a link between secondary metabolite production and predation.  相似文献   

19.
Therapeutic options for infections caused by gram-negative organisms expressing plasmid-mediated AmpC β-lactamases are limited because these organisms are usually resistant to all the β-lactam antibiotics, except for cefepime, cefpirome and the carbapenems. These organisms are a major concern in nosocomial infections and should therefore be monitored in surveillance studies. Hence, this study was aimed out to determine the prevalence of plasmid-mediated AmpC β-lactamases in E. coli and K. pneumoniae from a tertiary care in Bangalore. A total of 63 E. coli and 27 K. pneumoniae were collected from a tertiary care hospital in Bangalore from February 2008 to July 2008. The isolates with decreased susceptibility to cefoxitin were subjected to confirmation test with three dimensional extract tests. Minimum inhibitory concentrations (MICs) were determined by agar dilution method. Conjugation experiments, plasmid profiling and susceptibility testing were carried out to investigate the underlying mechanism of resistance. In our study, 52 (57.7%) isolates showed resistance to cefoxitin, the occurrence of AmpC was found to be 7.7% of the total isolates. Plasmid analysis of the selected isolates showed the presence of a single plasmid of 26 kb in E. coli and 2 Kb in K. pneumoniae. Plasmid-mediated AmpC β-lactamases were found in 11.1% of K. pneumoniae and in 6.3% of E. coli. Curing and conjugation experiments showed that resistance to cephamycins and cephalosporins was plasmid-mediated. Our study has demonstrated the occurrence of plasmid-mediated AmpC in E. coli and K. pneumoniae which illustrates the importance of molecular surveillance in tracking AmpC-producing strains at general hospitals and emphasizes the need for epidemiological monitoring.  相似文献   

20.
We investigated the ability of a detoxified derivative of a Shiga toxin 2 (Stx2)-encoding bacteriophage to infect and lysogenize enteric Escherichia coli strains and to develop infectious progeny from such lysogenized strains. The stx2 gene of the patient E. coli O157:H7 isolate 3538/95 was replaced by the chloramphenicol acetyltransferase (cat) gene from plasmid pACYC184. Phage 3538(Δstx2::cat) was isolated after induction of E. coli O157:H7 strain 3538/95 with mitomycin. A variety of strains of enteropathogenic E. coli (EPEC), enteroinvasive E. coli (EIEC), Stx-producing E. coli (STEC), enterotoxigenic E. coli (ETEC), enteroaggregative E. coli (EAEC), and E. coli from the physiological stool microflora were infected with 3538(Δstx2::cat), and plaque formation and lysogenic conversion of wild-type E. coli strains were investigated. With the exception of one EIEC strain, none of the E. coli strains supported the formation of plaques when used as indicators for 3538(Δstx2::cat). However, 2 of 11 EPEC, 11 of 25 STEC, 2 of 7 EAEC, 1 of 3 EIEC, and 1 of 6 E. coli isolates from the stool microflora of healthy individuals integrated the phage in their chromosomes and expressed resistance to chloramphenicol. Following induction with mitomycin, these lysogenic strains released infectious particles of 3538(Δstx2::cat) that formed plaques on a lawn of E. coli laboratory strain C600. The results of our study demonstrate that 3538(Δstx2::cat) was able to infect and lysogenize particular enteric strains of pathogenic and nonpathogenic E. coli and that the lysogens produced infectious phage progeny. Stx-encoding bacteriophages are able to spread stx genes among enteric E. coli strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号