首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many mosquito species, including the major malaria vector Anopheles gambiae, naturally undergo multiple reproductive cycles of blood feeding, egg development and egg laying in their lifespan. Such complex mosquito behavior is regularly overlooked when mosquitoes are experimentally infected with malaria parasites, limiting our ability to accurately describe potential effects on transmission. Here, we examine how Plasmodium falciparum development and transmission potential is impacted when infected mosquitoes feed an additional time. We measured P. falciparum oocyst size and performed sporozoite time course analyses to determine the parasite’s extrinsic incubation period (EIP), i.e. the time required by parasites to reach infectious sporozoite stages, in An. gambiae females blood fed either once or twice. An additional blood feed at 3 days post infection drastically accelerates oocyst growth rates, causing earlier sporozoite accumulation in the salivary glands, thereby shortening the EIP (reduction of 2.3 ± 0.4 days). Moreover, parasite growth is further accelerated in transgenic mosquitoes with reduced reproductive capacity, which mimic genetic modifications currently proposed in population suppression gene drives. We incorporate our shortened EIP values into a measure of transmission potential, the basic reproduction number R0, and find the average R0 is higher (range: 10.1%–12.1% increase) across sub-Saharan Africa than when using traditional EIP measurements. These data suggest that malaria elimination may be substantially more challenging and that younger mosquitoes or those with reduced reproductive ability may provide a larger contribution to infection than currently believed. Our findings have profound implications for current and future mosquito control interventions.  相似文献   

2.
Insecticide resistance constitutes a major threat that may undermine current gain in malaria control in most endemic countries. National Malaria Control Programmes (NMCPs) need as much information as possible on the resistance status of malaria vectors and underlying mechanisms in order to implement the most relevant and efficient control strategy. Bioassays, biochemical and molecular analysis were performed on An. gambiae collected in six sentinel sites in Côte d''Ivoire. The sites were selected on the basis of their bioclimatic status and agricultural practices. An. gambiae populations across sites showed high levels of resistance to organochloride, pyrethroid and carbamate insecticides. The kdr and ace-1R mutations were detected in almost all sentinel sites with mosquitoes on the coastal and cotton growing areas mostly affected by these mutations. At almost all sites, the levels of detoxifying enzymes (mixed-function oxidases (MFOs), non-specific esterases (NSE) and glutathione-S-transferases (GSTs)) in An. gambiae populations were significantly higher than the levels found in the susceptible strain Kisumu. Pre-exposure of mosquitoes to PBO, an inhibitor of MFOs and NSEs, significantly increased mortality rates to pyrethroids and carbamates in mosquitoes but resistance in most cases was not fully synergised by PBO, inferring a residual role of additional mechanisms, including kdr and ace-1 site insensitivity. The large distribution of resistance in Côte d''Ivoire raises an important question of whether to continue to deploy pyrethroid-based long-lasting insecticidal nets (LLINs) and insecticide residual spraying (IRS) towards which resistance continues to rise with no guarantee that the level of resistance would not compromise their efficacy. Innovative strategies that combine insecticide and synergists in LLINs or spatially LLIN and an effective non-pyrethroid insecticide for IRS could be in the short term the best practice for the NMCP to manage insecticide resistance in malaria vectors in Côte d''Ivoire and other endemic countries facing resistance.  相似文献   

3.
4.

Background

Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments.

Methods

Comparative studies of chlorpyrifos-methyl (CM), an organophosphate with low mammalian toxicity, and lambdacyhalothrin (L), a pyrethroid, were conducted in experimental huts in Côte d'Ivoire, West Africa. Anopheles gambiae and Culex quinquefasciatus mosquitoes from the area are resistant to pyrethroids and organophosphates (kdr and insensitive acetylcholinesterase Ace.1 R ). Several treatments and application rates on intact or holed nets were evaluated, including single treatments, mixtures, and differential wall/ceiling treatments.

Results and Conclusion

All of the treatments were effective in reducing blood feeding from sleepers under the nets and in killing both species of mosquito, despite the presence of the kdr and Ace.1 R genes at high frequency. In most cases, the effects of the various treatments did not differ significantly. Five washes of the nets in soap solution did not reduce the impact of the insecticides on A. gambiae mortality, but did lead to an increase in blood feeding. The three combinations performed no differently from the single insecticide treatments, but the low dose mixture performed encouragingly well indicating that such combinations might be used for controlling insecticide resistant mosquitoes. Mortality of mosquitoes that carried both Ace.1 R and Ace.1 S genes did not differ significantly from mosquitoes that carried only Ace.1 S genes on any of the treated nets, indicating that the Ace.1 R allele does not confer effective resistance to chlorpyrifos-methyl under the realistic conditions of an experimental hut.  相似文献   

5.
The symbiotic relationship between Asaia, an α-proteobacterium belonging to the family Acetobacteriaceae, and mosquitoes has been studied mainly in the Asian malaria vector Anopheles stephensi. Thus, we have investigated the nature of the association between Asaia and the major Afro-tropical malaria vector Anopheles gambiae. We have isolated Asaia from different wild and laboratory reared colonies of A. gambiae, and it was detected by PCR in all the developmental stages of the mosquito and in all the specimens analyzed. Additionally, we have shown that it localizes in the midgut, salivary glands and reproductive organs. Using recombinant strains of Asaia expressing fluorescent proteins, we have demonstrated the ability of the bacterium to colonize A. gambiae mosquitoes with a pattern similar to that described for A. stephensi. Finally, fluorescent in situ hybridization on the reproductive tract of females of A. gambiae showed a concentration of Asaia at the very periphery of the eggs, suggesting that transmission of Asaia from mother to offspring is likely mediated by a mechanism of egg-smearing. We suggest that Asaia has potential for use in the paratransgenic control of malaria transmitted by A. gambiae.  相似文献   

6.
We investigated the genetic determinism of high chlorpyrifos resistance (HCR), a phenotype first described in 1999 in Culex pipiens mosquitoes surviving chlorpyrifos doses ⩾1 mg l−1 and more recently found in field samples from Tunisia, Israel or Indian Ocean islands. Through chlorpyrifos selection, we selected several HCR strains that displayed over 10 000-fold resistance. All strains were homozygous for resistant alleles at two main loci: the ace-1 gene, with the resistant ace-1R allele expressing the insensitive G119S acetylcholinesterase, and a resistant allele of an unknown gene (named T) linked to the sex and ace-2 genes. We constructed a strain carrying only the T-resistant allele and studied its resistance characteristics. By crossing this strain with strains harboring different alleles at the ace-1 locus, we showed that the resistant ace-1R and the T alleles act in strong synergy, as they elicited a resistance 100 times higher than expected from a simple multiplicative effect. This effect was specific to chlorpyrifos and parathion and was not affected by synergists. We also examined how HCR was expressed in strains carrying other ace-1-resistant alleles, such as ace-1V or the duplicated ace-1D allele, currently spreading worldwide. We identified two major parameters that influenced the level of resistance: the number and the nature of the ace-1-resistant alleles and the number of T alleles. Our data fit a model that predicts that the T allele acts by decreasing chlorpyrifos concentration in the compartment targeted in insects.  相似文献   

7.

Background

Anopheles gambiae is the main vector of Plasmodium falciparum in Africa. The mosquito midgut constitutes a barrier that the parasite must cross if it is to develop and be transmitted. Despite the central role of the mosquito midgut in the host/parasite interaction, little is known about its protein composition. Characterisation of An. gambiae midgut proteins may identify the proteins that render An. gambiae receptive to the malaria parasite.

Methods

We carried out two-dimensional gel electrophoresis of An. gambiae midgut proteins and compared protein profiles for midguts from males, sugar-fed females and females fed on human blood.

Results

Very few differences were detected between male and female mosquitoes for the approximately 375 silver-stained proteins. Male midguts contained ten proteins not detected in sugar-fed or blood-fed females, which are therefore probably involved in male-specific functions; conversely, female midguts contained twenty-three proteins absent from male midguts. Eight of these proteins were specific to sugar-fed females, and another ten, to blood-fed females.

Conclusion

Mass spectrometry analysis of the proteins found only in blood-fed female midguts, together with data from the recent sequencing of the An. gambiae genome, should make it possible to determine the role of these proteins in blood digestion or parasite receptivity.  相似文献   

8.
Malaria is an important global public health challenge, and is transmitted by anopheline mosquitoes during blood feeding. Mosquito vector control is one of the most effective methods to control malaria, and population replacement with genetically engineered mosquitoes to block its transmission is expected to become a new vector control strategy. The salivary glands are an effective target tissue for the expression of molecules that kill or inactivate malaria parasites. Moreover, salivary gland cells express a large number of molecules that facilitate blood feeding and parasite transmission to hosts. In the present study, we adapted a functional deficiency system in specific tissues by inducing cell death using the mouse Bcl-2-associated X protein (Bax) to the Asian malaria vector mosquito, Anopheles stephensi. We applied this technique to salivary gland cells, and produced a transgenic strain containing extremely low amounts of saliva. Although probing times for feeding on mice were longer in transgenic mosquitoes than in wild-type mosquitoes, transgenic mosquitoes still successfully ingested blood. Transgenic mosquitoes also exhibited a significant reduction in oocyst formation in the midgut in a rodent malaria model. These results indicate that mosquito saliva plays an important role in malaria infection in the midgut of anopheline mosquitoes. The dysfunction in the salivary glands enabled the inhibition of malaria transmission from hosts to mosquito midguts. Therefore, salivary components have potential in the development of new drugs or genetically engineered mosquitoes for malaria control.  相似文献   

9.
Classic vector control strategies target mosquitoes indoors as the main transmitters of malaria are indoor-biting and –resting mosquitoes. However, the intensive use of insecticide-treated bed-nets (ITNs) and indoor residual spraying have put selective pressure on mosquitoes to adapt in order to obtain human blood meals. Thus, early-evening and outdoor vector activity is becoming an increasing concern. This study assessed the effect of a deltamethrin-treated net (100 mg/m2) attached to a one-meter high fence around outdoor cattle enclosures on the number of mosquitoes landing on humans. Mosquitoes were collected from four cattle enclosures: Pen A – with cattle and no net; B – with cattle and protected by an untreated net; C – with cattle and protected by a deltamethrin-treated net; D – no cattle and no net. A total of 3217 culicines and 1017 anophelines were collected, of which 388 were Anopheles gambiae and 629 An. ziemanni. In the absence of cattle nearly 3 times more An. gambiae (p<0.0001) landed on humans. The deltamethrin-treated net significantly reduced (nearly three-fold, p<0.0001) culicine landings inside enclosures. The sporozoite rate of the zoophilic An. ziemanni, known to be a secondary malaria vector, was as high as that of the most competent vector An. gambiae; raising the potential of zoophilic species as secondary malaria vectors. After deployment of the ITNs a deltamethrin persistence of 9 months was observed despite exposure to African weather conditions. The outdoor use of ITNs resulted in a significant reduction of host-seeking culicines inside enclosures. Further studies investigating the effectiveness and spatial repellence of ITNs around other outdoor sites, such as bars and cooking areas, as well as their direct effect on vector-borne disease transmission are needed to evaluate its potential as an appropriate outdoor vector control tool for rural Africa.  相似文献   

10.

Background

The role of inter-specific hybridisation is of particular importance in mosquito disease vectors for predicting the evolution of insecticide resistance. Two molecular forms of Anopheles gambiae s.s., currently recognized as S and M taxa, are considered to be incipient sibling species. Hybrid scarcity in the field was suggested that differentiation of M and S taxa is maintained by limited or absent gene flow. However, recent studies have revealed shared polymorphisms within the M and S forms, and a better understanding of the occurrence of gene flow is needed. One such shared polymorphism is the G119S mutation in the ace-1 gene (which is responsible for insecticide resistance); this mutation has been described in both the M and S forms of A. gambiae s.s.

Methods and Results

To establish whether the G119S mutation has arisen independently in each form or by genetic introgression, we analysed coding and non-coding sequences of ace-1 alleles in M and S mosquitoes from representative field populations. Our data revealed many polymorphic sites shared by S and M forms, but no diversity was associated with the G119S mutation. These results indicate that the G119S mutation was a unique event and that genetic introgression explains the observed distribution of the G119S mutation within the two forms. However, it was impossible to determine from our data whether the mutation occurred first in the S form or in the M form. Unexpectedly, sequence analysis of some resistant individuals revealed a duplication of the ace-1 gene that was observed in both A. gambiae s.s. M and S forms. Again, the distribution of this duplication in the two forms most likely occurred through introgression.

Conclusions

These results highlight the need for more research to understand the forces driving the evolution of insecticide resistance in malaria vectors and to regularly monitor resistance in mosquito populations of Africa.  相似文献   

11.
12.
Anopheles gambiae is the major mosquito vector of malaria in sub-Saharan Africa. At present, insecticide-treated nets (ITNs) impregnated with pyrethroid insecticides are widely used in malaria-endemic regions to reduce infection; however the emergence of pyrethroid-resistant mosquitoes has significantly reduced the effectiveness of the pyrethroid ITNs. An acetylcholinesterase (AChE) inhibitor that is potent for An. gambiae but weakly potent for the human enzyme could potentially be safely deployed on a new class of ITNs. In this paper we provide a preliminary pharmacological characterization of An. gambiae AChE, discuss structural features of An. gambiae and human AChE that could lead to selective inhibition, and describe compounds with 130-fold selectivity for inhibition of An. gambiae AChE relative to human AChE.  相似文献   

13.
14.

Background

Malaria parasites undergo complex developmental transitions within the mosquito vector. A commonly used laboratory model for studies of mosquito-malaria interaction is the rodent parasite, P. berghei. Anopheles funestus is a major malaria vector in sub-Saharan Africa but has received less attention than the sympatric species, Anopheles gambiae. The imminent completion of the A. funestus genome sequence will provide currently lacking molecular tools to describe malaria parasite interactions in this mosquito, but previous reports suggested that A. funestus is not permissive for P. berghei development.

Methods

An A. funestus population was generated in the laboratory by capturing female wild mosquitoes in Mali, allowing them to oviposit, and rearing the eggs to adults. These F1 progeny of wild mosquitoes were allowed to feed on mice infected with a fluorescent P. berghei strain. Fluorescence microscopy was used to track parasite development inside the mosquito, salivary gland sporozoites were tested for infectivity to mice, and parasite development in A. funestus was compared to A. gambiae.

Results

P. berghei oocysts were detectable on A. funestus midguts by 7 days post-infection. By 18–20 days post-infection, sporozoites had invaded the median and distal lateral lobes of the salivary glands, and hemocoel sporozoites were observed in the hemolymph. Mosquitoes were capable of infecting mice via bite, demonstrating that A. funestus supports the complete life cycle of P. berghei. In a random sample of wild mosquito genotypes, A. funestus prevalence of infection and the characteristics of parasite development were similar to that observed in A. gambiae-P. berghei infections.

Conclusions

The data presented in this study establish an experimental laboratory model for Plasmodium infection of A. funestus, an important vector of human malaria. Studying A. funestus-Plasmodium interactions is now feasible in a laboratory setting. This information lays the groundwork for exploitation of the awaited genome sequence of A. funestus.  相似文献   

15.
16.
Tsetse are vectors of pathogenic trypanosomes, agents of human and animal trypanosomiasis in Africa. Components of tsetse saliva (sialome) are introduced into the mammalian host bite site during the blood feeding process and are important for tsetse’s ability to feed efficiently, but can also influence disease transmission and serve as biomarkers for host exposure. We compared the sialome components from four tsetse species in two subgenera: subgenus Morsitans: Glossina morsitans morsitans (Gmm) and Glossina pallidipes (Gpd), and subgenus Palpalis: Glossina palpalis gambiensis (Gpg) and Glossina fuscipes fuscipes (Gff), and evaluated their immunogenicity and serological cross reactivity by an immunoblot approach utilizing antibodies from experimental mice challenged with uninfected flies. The protein and immune profiles of sialome components varied with fly species in the same subgenus displaying greater similarity and cross reactivity. Sera obtained from cattle from disease endemic areas of Africa displayed an immunogenicity profile reflective of tsetse species distribution. We analyzed the sialome fractions of Gmm by LC-MS/MS, and identified TAg5, Tsal1/Tsal2, and Sgp3 as major immunogenic proteins, and the 5''-nucleotidase family as well as four members of the Adenosine Deaminase Growth Factor (ADGF) family as the major non-immunogenic proteins. Within the ADGF family, we identified four closely related proteins (TSGF-1, TSGF-2, ADGF-3 and ADGF-4), all of which are expressed in tsetse salivary glands. We describe the tsetse species-specific expression profiles and genomic localization of these proteins. Using a passive-immunity approach, we evaluated the effects of rec-TSGF (TSGF-1 and TSGF-2) polyclonal antibodies on tsetse fitness parameters. Limited exposure of tsetse to mice with circulating anti-TSGF antibodies resulted in a slight detriment to their blood feeding ability as reflected by compromised digestion, lower weight gain and less total lipid reserves although these results were not statistically significant. Long-term exposure studies of tsetse flies to antibodies corresponding to the ADGF family of proteins are warranted to evaluate the role of this conserved family in fly biology.  相似文献   

17.
The Anopheles gambiae salivary gland protein 6 (gSG6) is a small protein specifically found in the salivary glands of adult female mosquitoes. We report here the expression of a recombinant form of the protein and we show that in vivo gSG6 is expressed in distal-lateral lobes and is secreted with the saliva while the female mosquito probes for feeding. Injection of gSG6 dsRNA into adult A. gambiae females results in decreased gSG6 protein levels, increased probing time and reduced blood feeding ability. gSG6 orthologs have been found so far only in the salivary glands of Anopheles stephensi and Anopheles funestus, both members of the Cellia subgenus. We report here the gSG6 sequence from five additional anophelines, four species of the A. gambiae complex and Anopheles freeborni, a member of the subgenus Anopheles. We conclude that gSG6 plays some essential blood feeding role and was recruited in the anopheline subfamily most probably after the separation of the lineage which gave origin to Cellia and Anopheles subgenera.  相似文献   

18.
Salivary gland homogenates of adult female anopheline mosquitoes, of three different species, hydrolysed ATP and ADP, thereby demonstrating an apyrase activity. Total enzyme activity was greatest in the vector species A. freeborni (20.7 ± 2.4 mU/pair of glands) and least in the autogenous mosquito A. sp. nr. salbaii (3.0 ± 0.4 mU/pair of glands); another vector species, A. stephensi, produced intermediate levels of the enzyme (7.8 ± 0.7 mU/pair of glands). In all cases, the reaction was activated by divalent cations and maximal at pH 9.0 and in the presence of 2-mercaptoethanol. Apyrase activity in each salivary gland correlated with the degree of inhibition of ADP-induced platelet aggregation in vitro. Duration of probing correlated inversely with salivary apyrase content. We conclude that salivary apyrase largely determines a mosquito's ability to locate blood. Differential selective pressures for facility of blood location would have influenced the level of salivary apyrase in these mosquitoes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号