共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
目的 为了制备不同链种类、不同链长及磷酸化修饰的泛素样品。方法 本文主要以生物酶法为手段对以上样品的制备路线进行阐述。制备的主要方法分为两种,一是采用逐次添加的方式达到泛素链延长的目的,二是通过一次酶反应制备混合的多聚泛素链,然后对不同链长的泛素链进行纯化分离。结果 以上两种策略都能达到制备多聚泛素链的目的。进一步,通过对泛素进行磷酸化修饰,制备了磷酸化的泛素样品。通过K11和K48的泛素酶制备了K11/K48分支链泛素。结论 基于以上泛素链的制备路线,可以进一步对不同链接形式的不同亚基进行磷酸化修饰等翻译后修饰,也可以通过在特定亚基进行同位素标记及在特定位点引入小分子探针,进而进行NMR和FRET的测定。综上所述,本方法将为从事泛素信号通路和泛素生化研究的科学家提供借鉴和帮助。 相似文献
3.
蛋白的磷酸化与其泛素化作用有着广泛而密切的联系。有研究报道,在DNA损伤的情况下,蛋白激酶Akt能磷酸化转录因子Miz1,参与细胞周期停滞的调节;同时,Miz1因子还可在TNFα诱导下被E3泛素连接酶Mule泛素化而降解,从而解除其对JNK信号通路的阻遏,致使JNK信号通路激活。对鼠源野生型Miz1因子(WT Miz1)的AKT磷酸化保守位点进行定点突变,得到磷酸化的突变因子S419AMiz1,并进行了免疫印记和细胞体内泛素化分析。结果显示:Miz1的磷酸化非但不是其泛素化所必需的因素,反而会对其泛素化起到一定的抑制作用。 相似文献
4.
泛素在真核生物体内广泛存在,泛素化修饰是转录后的修饰方式之一;组蛋白是染色质的主要成分之一,与基因的表达有密切关系。组蛋白的泛素化修饰与经典的蛋白质的泛素调节途径不同,不会导致蛋白质的降解,但是能够招募核小体到染色体、参与X染色体的失活、影响组蛋白的甲基化和基因的转录。组蛋白的去泛素化修饰同样与染色质的结构及基因表达密切相关。组蛋白的泛素化和磷酸化、乙酰化、甲基化修饰之间还存在协同和级联效应。 相似文献
5.
Fanconi贫血是一种罕见的隐性遗传性疾病,临床常以先天性畸形、进行性骨髓衰竭和遗传性肿瘤倾向为主要表现而确诊。FA病人细胞对DNA交联剂如丝裂霉素C (MMC)高度敏感。目前已经发现至少12种FA基因的缺失或突变能够引起FA表型的出现,其中10种相应的编码蛋白形成FA复合物共同参与FA/BRCA2 DNA损伤修复途径—FA途径。FA核心复合物蛋白FANCL具有泛素连接酶活性,在结合酶UBE2T共同作用下,催化下游蛋白FANCD2单泛化,泛素化FANCD2与BRCA2形成新的复合物,修复DNA损伤。去泛素化酶USP1在DNA修复完毕后移除FANCD2的单体泛素,使因损伤修复而阻滞的细胞周期继续进行。机体很可能在不同信号通路对FANCD2泛素化/去泛素化的精细调节下,调控FA途径参与不同的DNA修复过程。 相似文献
6.
自噬与泛素化蛋白降解途径的分子机制及其功能 总被引:2,自引:0,他引:2
细胞内所有的蛋白质和大多数的细胞外蛋白都在不断的进行更新,即它们在不断地被降解,并被新合成的蛋白质取代。细胞内蛋白的降解主要通过两个途径,即自噬和泛素蛋白酶体系统。自噬是一种由溶酶体介导的细胞内过多或异常蛋白质的降解机制。在细胞内主要有3种类型的自噬,即分子伴侣介导的自噬、微自噬和巨自噬。泛素蛋白酶体系统是由泛素介导的一种高度复杂的蛋白降解机制,它参与降解细胞内许多蛋白质并且这个过程具有高度特异性。细胞内蛋白质的降解参与调节许多细胞过程,包括细胞周期、DNA修复、细胞生长和分化、细胞质量的控制、病原生物的感染反应和细胞凋亡等。许多严重的人类疾病被认为是由于蛋白质降解系统的紊乱而引起的。文章综述了自噬和泛素化途径及其分子机制,以及蛋白质降解系统紊乱的病理学意义。 相似文献
7.
8.
泛素化修饰作为最普遍存在的翻译后修饰形式之一,介导了生物体内蛋白质稳态调控等功能。泛素分子的7个赖氨酸和N端甲硫氨酸可以继续被泛素分子修饰,进而形成8种类型的泛素链。其中,K48和K63泛素链由于丰度高且功能研究相对清楚被称为经典泛素链,而其他6种泛素链被称为非经典泛素链。在非经典泛素链中,K27泛素链是在泛素分子的Lys27 (K27)位点上继续发生泛素化形成的,具有紧密的空间结构。近些年,K27泛素链在固有免疫、蛋白稳态和DNA损伤修复等方面的功能逐渐被报道,但K27泛素链的合成、修剪过程及其下游招募特定蛋白质的分子调控机制还所知甚少。文中结合实验室研究,综述了K27泛素链结构特征、结合方式和生物学功能,为未来K27泛素链结构和生物学功能的深入研究提供参考。 相似文献
9.
机体细胞在多种化学物质和内外环境不断攻击下会诱发DNA损伤。为了维持基因组的稳定性,细胞内拥有一系列完善而精确的细胞应答机制来保护基因组DNA的完整性。细胞首先通过DNA损伤检测点,然后通过一系列细胞信号转导通路,启动细胞周期阻滞,进而介导细胞修复或凋亡。大量研究表明泛素化作为一种重要的蛋白质翻译后修饰方式,参与调控了多种细胞生理过程。近期研究表明,DNA损伤导致复制应激可诱发PCNA的翻译后泛素化修饰,泛素化修饰的PCNA可能参与了多种DNA损伤应激过程,影响细胞选择不同的DNA损伤应答途径,导致细胞截然不同的转归。因此,更好地了解PCNA泛素化的作用及其影响DNA损伤应答通路可为我们更深入地了解人类细胞如何调控异常的DNA代谢过程和癌症的发生和发展机制提供依据。 相似文献
10.
机体细胞在多种化学物质和内外环境不断攻击下会诱发DNA损伤。为了维持基因组的稳定性,细胞内拥有一系列完善而精确的细胞应答机制来保护基因组DNA的完整性。细胞首先通过DNA损伤检测点,然后通过一系列细胞信号转导通路,启动细胞周期阻滞,进而介导细胞修复或凋亡。大量研究表明泛素化作为一种重要的蛋白质翻译后修饰方式,参与调控了多种细胞生理过程。近期研究表明,DNA损伤导致复制应激可诱发PCNA的翻译后泛素化修饰,泛素化修饰的PCNA可能参与了多种DNA损伤应激过程,影响细胞选择不同的DNA损伤应答途径,导致细胞截然不同的转归。因此,更好地了解PCNA泛素化的作用及其影响DNA损伤应答通路可为我们更深入地了解人类细胞如何调控异常的DNA代谢过程和癌症的发生和发展机制提供依据。 相似文献
11.
12.
13.
《Cell cycle (Georgetown, Tex.)》2013,12(17)
Comment on: Gatti M, et al. Cell Cycle 2012; 11:2538-44. 相似文献
14.
Ubiquitylation is among the most prevalent post‐translational modifications (PTMs) and regulates numerous cellular functions. Interestingly, ubiquitin (Ub) can be itself modified by other PTMs, including acetylation and phosphorylation. Acetylation of Ub on K6 and K48 represses the formation and elongation of Ub chains. Phosphorylation of Ub happens on multiple sites, S57 and S65 being the most frequently modified in yeast and mammalian cells, respectively. In mammals, the PINK1 kinase activates ubiquitin ligase Parkin by phosphorylating S65 of Ub and of the Parkin Ubl domain, which in turn promotes the amplification of autophagy signals necessary for the removal of damaged mitochondria. Similarly, TBK1 phosphorylates the autophagy receptors OPTN and p62 to initiate feedback and feedforward programs for Ub‐dependent removal of protein aggregates, mitochondria and pathogens (such as Salmonella and Mycobacterium tuberculosis). The impact of PINK1‐mediated phosphorylation of Ub and TBK1‐dependent phosphorylation of autophagy receptors (OPTN and p62) has been recently linked to the development of Parkinson's disease and amyotrophic lateral sclerosis, respectively. Hence, the post‐translational modification of Ub and its receptors can efficiently expand the Ub code and modulate its functions in health and disease. 相似文献
15.
Annika Pfeiffer Nico P Dantuma Annika Pfeiffer Martijn S Luijsterburg Klara Acs Wouter W Wiegant Angela Helfricht Laura K Herzog Melania Minoia Claudia Böttcher Florian A Salomons Haico van Attikum Nico P Dantuma 《The EMBO journal》2017,36(8):1066-1083
The SUMO-targeted ubiquitin ligase RNF4 functions at the crossroads of the SUMO and ubiquitin systems. Here, we report that the deubiquitylation enzyme (DUB) ataxin-3 counteracts RNF4 activity during the DNA double-strand break (DSB) response. We find that ataxin-3 negatively regulates ubiquitylation of the checkpoint mediator MDC1, a known RNF4 substrate. Loss of ataxin-3 markedly decreases the chromatin dwell time of MDC1 at DSBs, which can be fully reversed by co-depletion of RNF4. Ataxin-3 is recruited to DSBs in a SUMOylation-dependent fashion, and in vitro it directly interacts with and is stimulated by recombinant SUMO, defining a SUMO-dependent mechanism for DUB activity toward MDC1. Loss of ataxin-3 results in reduced DNA damage-induced ubiquitylation due to impaired MDC1-dependent recruitment of the ubiquitin ligases RNF8 and RNF168, and reduced recruitment of 53BP1 and BRCA1. Finally, ataxin-3 is required for efficient MDC1-dependent DSB repair by non-homologous end-joining and homologous recombination. Consequently, loss of ataxin-3 sensitizes cells to ionizing radiation and poly(ADP-ribose) polymerase inhibitor. We propose that the opposing activities of RNF4 and ataxin-3 consolidate robust MDC1-dependent signaling and repair of DSBs. 相似文献
16.
泛素化修饰是蛋白质的一种重要的翻译后水平修饰,而且有着多种不同的生物学功能,对蛋白质的结构与功能、基因表达调控以及蛋白质-蛋白质/其它分子相互作用等多个方面有着重要的调控作用。Rad6即是酵母中的一种重要的泛素载体蛋白。Rad6通过泛素化修饰多种靶蛋白在DNA的损伤修复中发挥着重要作用。文章重点讨论了Rad6在DNA损伤修复方面的功能以及在正常情况下对染色质结构和基因表达调控的影响。 相似文献
17.
《DNA Repair》2015
The mammalian apurinic/apyrimidinic (AP) endonuclease 1 (APE1) is an essential DNA repair/gene regulatory protein. Decrease of APE1 in cells by inducible shRNA knockdown or by conditional gene knockout caused apoptosis. Here we succeeded in establishing a unique mouse embryonic fibroblast (MEF) line expressing APE1 at a level far lower than those achieved with shRNA knockdown. The cells, named MEFla (MEFlowAPE1), were hypersensitive to methyl methanesulfonate (MMS), and showed little activity for repairing AP-sites and MMS induced DNA damage. While these results were consistent with the essential role of APE1 in repair of AP sites, the MEFla cells grew normally and the basal activation of poly(ADP-ribose) polymerases in MEFla was lower than that in the wild-type MEF (MEFwt), indicating the low DNA damage stress in MEFla under the normal growth condition. Oxidative phosphorylation activity in MEFla was lower than in MEFwt, while the glycolysis rates in MEFla were higher than in MEFwt. In addition, we observed decreased intracellular oxidative stress in MEFla. These results suggest that cells with low APE1 reversibly suppress mitochondrial respiration and thereby reduce DNA damage stress and increases the cell viability. 相似文献
18.
Liu-Ya Tang Adam Thomas Ming Zhou Ying E. Zhang 《The Journal of biological chemistry》2020,295(52):18485
Timely repair of DNA double-strand breaks (DSBs) is essential to maintaining genomic integrity and preventing illnesses induced by genetic abnormalities. We previously demonstrated that the E3 ubiquitin ligase SMURF2 plays a critical tumor suppressing role via its interaction with RNF20 (ring finger protein 20) in shaping chromatin landscape and preserving genomic stability. However, the mechanism that mobilizes SMURF2 in response to DNA damage remains unclear. Using biochemical approaches and MS analysis, we show that upon the onset of the DNA-damage response, SMURF2 becomes phosphorylated at Ser384 by ataxia telangiectasia mutated (ATM) serine/threonine kinase, and this phosphorylation is required for its interaction with RNF20. We demonstrate that a SMURF2 mutant with an S384A substitution has reduced capacity to ubiquitinate RNF20 while promoting Smad3 ubiquitination unabatedly. More importantly, mouse embryonic fibroblasts expressing the SMURF2 S384A mutant show a weakened ability to sustain the DSB response compared with those expressing WT SMURF2 following etoposide treatment. These data indicate that SMURF2-mediated RNF20 ubiquitination and degradation controlled by ataxia telangiectasia mutated–induced phosphorylation at Ser384 constitutes a negative feedback loop that regulates DSB repair. 相似文献
19.
Kültz D 《Zoology (Jena, Germany)》2001,104(3-4):198-208
All cells are characterized by the expression of osmoregulatory mechanisms, although the degree of this expression is highly variable in different cell types even within a single organism. Cellular osmoregulatory mechanisms constitute a conserved set of adaptations that offset antagonistic effects of altered extracellular osmolality/environmental salinity on cell integrity and function. Cellular osmoregulation includes the regulation of cell volume and ion transport but it does not stop there. We know that organic osmolyte concentration, protein structure, cell turnover, and other cellular parameters are osmoregulated as well. In this brief review two important aspects of cellular osmoregulation are emphasized: 1) maintenance of genomic integrity, and 2) the central role of protein phosphorylation. Novel insight into these two aspects of cellular osmoregulation is illustrated based on two cell models, mammalian kidney inner medullary cells and teleost gill epithelial cells. Both cell types are highly hypertonicity stress-resistant and, therefore, well suited for the investigation of osmoregulatory mechanisms. Damage to the genome is discussed as a newly discovered aspect of hypertonic threat to cells and recent insights on how mammalian kidney cells deal with such threat are presented. Furthermore, the importance of protein phosphorylation as a core mechanism of osmosensory signal transduction is emphasized. In this regard, the potential roles of the 14-3-3 family of phospho-protein adaptor molecules for cellular osmoregulation are highlighted primarily based on work with fish gill epithelial cells. These examples were chosen for the reader to appreciate the numerous and highly specific interactions between stressor-specific and non-specific pathways that form an extensive cellular signaling network giving rise to adaptive compensation of hypertonicity. Furthermore, the example of 14-3-3 proteins illustrates that a single protein may participate in several pathways that are non-specific with regard to the type of stress and, at the same time, in stress-specific pathways to promote cell integrity and function during hypertonicity. 相似文献
20.
Anna Sawicka Christian Seiser 《Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms》2014,1839(8):711-718
Systematic analysis of histone modifications has revealed a plethora of posttranslational modifications that mediate changes in chromatin structure and gene expression. Histone phosphorylation is a transient histone modification that becomes induced by extracellular signals, DNA damage or entry into mitosis. Importantly, phosphorylation of histone proteins does lead not only to the binding of specific reader proteins but also to changes in the affinity for readers or writers of other histone modifications. This induces a cross-talk between different chromatin modifications that allows the spatio-temporal control of chromatin-associated events. In this review we will summarize the progress in our current knowledge of factors sensing reversible histone phosphorylation in different biological scenarios. This article is part of a Special Issue entitled: Molecular mechanisms of histone modification function. 相似文献