首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extracellular adenosine is well reported to suppress tumor growth by induction of apoptosis. However, in this study we found that adenosine treatment results in cellular senescence in A549 lung cancer cells both in vitro and in vivo; adenosine induces cell cycle arrest and senescence in a p53/p21 dependent manner; adenosine elevates the level of phosphor-γH2AX, pCHK2 and pBRCA1, the markers for prolonged DNA damage response which are likely responsible for initiating the cellular senescence. Our study first demonstrates that adenosine suppresses growth of cancer cells by inducing senescence and provides additional evidence that adenosine could act as an effective anticancer agent for targeted cancer therapy.  相似文献   

2.
The Hsp90 chaperone has become the attractive pharmacological target to inhibit tumor cell proliferation. However, tumor cells can evolve with mechanisms to overcome Hsp90 inhibition. Using human neuroblastoma, we have investigated one such limitation. Here, we demonstrate that neuroblastoma cells overcome the interference of tumor suppressor p16INK4a in cell proliferation, which is due to its latent interaction with CDK4 and CDK6. Cells also displayed impedance to the pharmacological inhibition of cancer chaperone Hsp90 inhibition with respect to induced cytotoxicity. However, the p16INK4a knockdown has triggered the activation of cyclin-CDK6 axis and enhanced the cell proliferation. These cells are eventually sensitized to Hsp90 inhibition by activating the DNA damage response mediated through p53-p21WAF-1 axis and G1 cell cycle exit. While both CDK4 and CDK6 have exhibited low affinity to p16INK4a, CDK6 has exhibited high affinity to Hsp90. Destabilizing the CDK6 interaction with Hsp90 has prolonged G2/M cell cycle arrest fostering to premature cellular senescence. The senescence driven cells exhibited compromised metastatic potential both in vitro as well as in mice xenografts. Our study unravels that cancer cells can be adapted to the constitutive expression of tumor suppressors to overcome therapeutic interventions. Our findings display potential implication of Hsp90 inhibitors to overcome such adaptations.  相似文献   

3.
The TOR (target of rapamycin) pathway is involved in aging in diverse organisms from yeast to mammals. We have previously demonstrated in human and rodent cells that mTOR converts stress-induced cell cycle arrest to irreversible senescence (geroconversion), whereas rapamycin decelerates or suppresses geroconversion during cell cycle arrest. Here, we investigated whether rapamycin can suppress replicative senescence of rodent cells. Mouse embryonic fibroblasts (MEFs) gradually acquired senescent morphology and ceased proliferation. Rapamycin decreased cellular hypertrophy, and SA-beta-Gal staining otherwise developed by 4-6 passages, but it blocked cell proliferation, masking its effects on replicative lifespan. We determined that rapamycin inhibited pS6 at 100-300 pM and inhibited proliferation with IC50 around 30 pM. At 30 pM, rapamycin partially suppressed senescence. However, the gerosuppressive effect was balanced by the cytostatic effect, making it difficult to suppress senescence without causing quiescence. We also investigated rat embryonic fibroblasts (REFs), which exhibited markers of senescence at passage 7, yet were able to slowly proliferate until 12–14 passages. REFs grew in size, acquired a large, flat cell morphology, SA-beta-Gal staining and components of DNA damage response (DDR), in particular, γH2AX/53BP1 foci. Incubation of REFs with rapamycin (from passage 7 to passage 10) allowed REFs to overcome the replicative senescence crisis. Following rapamycin treatment and removal, a fraction of proliferating REFs gradually increased and senescent phenotype disappeared completely by passage 24.  相似文献   

4.
Acute oncogenic stress can activate autophagy and facilitate permanent arrest of the cell cycle through a failsafe mechanism known as oncogene-induced senescence (OIS). Kaposi's sarcoma-associated herpesvirus (KSHV) proteins are known to subvert autophagic pathways, but the link to Kaposi's sarcoma pathogenesis is unclear. We find that oncogenic assault caused by latent KSHV infection elicits DNA damage responses (DDRs) characteristic of OIS, yet infected cells display only modest levels of autophagy and fail to senesce. These aberrant responses result from the combined activities of tandemly expressed KSHV v-cyclin and v-FLIP proteins. v-Cyclin deregulates the cell cycle, triggers DDRs, and if left unchecked can promote autophagy and senescence. However, during latency v-FLIP blocks v-cyclin-induced autophagy and senescence in a manner that requires intact v-FLIP ATG3-binding domains. Together, these data reveal a coordinated viral gene expression program that usurps autophagy, blocks senescence, and facilitates the proliferation of KSHV-infected cells.  相似文献   

5.
Gonolobus condurango plant extract is used as an anticancer drug in some traditional systems of medicine including homeopathy, but it apparently lacks any scientific validation. Further, no detailed study is available to suggest whether condurango-glycoside-A (CGA), a major ingredient of condurango serves as a potent anticancer compound. Therefore, we investigated apoptosis-inducing ability of CGA against cervix carcinoma cells (HeLa). β-galactosidase-activity and DNA damage were critically studied at different time points; while induced DNA-damage was observed at 9–12th hours, senescence of cells appeared at a later stage (18th hour after CGA treatment), implicating thereby a possible role of DNA damage in inducing pre-mature cell senescence. Concurrently, the number of cells undergoing apoptosis increased along with increase in reactive oxygen species (ROS) generation. Expression of p53 was also up-regulated, indicating that apoptosis could have been mediated through p53 pathway. DCHFDA (4′,6-Diamidino-2-phenylindole dihydrochloride) assay, acridine orange/ethidium bromide staining and annexin V/PI assay results collectively confirmed that apoptosis was induced by increased ROS generation. Reduction in proliferation of cells was further evidenced by the cell cycle arrest at G0/G1 stage. Expression profiles of certain relevant genes and proteins like p53, Akt, Bcl-2, Bax, cytochrome c and caspase 3 also provided evidence of ROS mediated p53 up-regulation and further boost in Bax expression and followed by cytochrome c release and activation of caspase 3. Overall results suggest that CGA initiates ROS generation, promoting up-regulation of p53 expression, thus resulting in apoptosis and pre-mature senescence associated with DNA damage.  相似文献   

6.
DNA oligonucleotides with sequence homology to human telomeric DNA (T-oligo) induce cell cycle arrest, followed by apoptosis, senescence, or autophagy in a human cancer cell type-specific manner. T-oligo has potential as a new therapeutic strategy in oncology because of its ability to target certain types of tumor cells while sparing normal ones. In the present study, we demonstrate the T-oligo-induced S-phase cell cycle arrest in four pancreatic cancer cell lines. To further contribute to the mechanistic understanding of T-oligo, we also identify cyclin dependent kinase 2 (cdk2) as a functional mediator in the T-oligo-induced cell cycle arrest of pancreatic cancer cells. Ectopic expression of a constitutively active cdk2 mutant abrogates T-oligo-induced cell cycle arrest in these tumor cells while knockdown of cdk2 expression alone recapitulates the T-oligo effect. Finally, we demonstrate the dispensability of T-oligo-induced ATM/ATR-mediated DNA damage response-signaling pathways, which have long been considered functional in the T-oligo signaling mechanism.  相似文献   

7.
In most patients with lung cancer radiation treatment is used either as single agent or in combination with radiosensitizing drugs. However, the mechanisms underlying combined therapy and its impact on different modes of cell death have not yet been fully elucidated. We aimed to examine effects of single and combined treatments with γ-rays and erlotinib on radioresistant CRL-5876 human lung adenocarcinoma cells with particular emphasis on cell death. CRL-5876 cells were treated with γ-rays and/or erlotinib and changes in cell cycle, DNA repair dynamics, ultrastructure, nuclear morphology and protein expression were monitored at different time points. To reveal the relationship between types of cell death that arise after these treatments, autophagy was blocked with chloroquine. We found that higher dose of γ-rays causes G2/M arrest while adding of erlotinib to this treatment decreases the number of cells in S phase. Impact of erlotinib on kinetics of disappearance of irradiation-induced DNA double strand breaks is reflected in the increase of residual γ-H2AX foci after 24 h. γ-rays provoke cytoprotective autophagy which precedes development of senescence. Erlotinib predominantly induces apoptosis and enlarges the number of apoptotic cells in the irradiated CRL-5876 cells. Chloroquine improved cytotoxicity induced by radiation and erlotinib, increased apoptosis and decreased senescence in the CRL-5876 cells. The results obtained on CRL-5876 cells indicate significant radiosensitizing effect of erlotinib and suggest that chloroquine in the combination with the above treatments may have an additional antitumor effect in lung adenocarcinoma.  相似文献   

8.
The mechanisms of tumor suppression must be linked to the oncogenic threats that may affect a normal cell. An important cancer causing mechanism is the accidental activation of genes that stimulate cell proliferation (oncogenes) by a variety of endogenous or environmental mutagens. This event has been experimentally modelled by enforcing the expression of oncogenes in primary cells. The astonishing outcome of these manipulations is that oncogenes trigger antiproliferative responses preventing progression to malignant transformation. These responses bring to an end proliferation due to cell death or a permanent cell cycle arrest called senescence. Here we review evidence indicating that oncogene induced senescence (OIS) involves activation of p53 via the DNA damage response (DDR). These results imply mechanisms of DNA damage in cells expressing oncogenes, that may be secondary to reactive oxygen species and/or some form of “oncogenic stress” that affect normal DNA replication. Interestingly, DNA damage signals persist in cells that escape from senescence. The implications of these signals for tumorigenesis are also discussed. Given that DNA damage signals have now been observed in cells treated with any stimuli known to induce senescence, the process can be redefined as a metabolically viable but permanent cell cycle arrest with persistent DNA damage signaling.  相似文献   

9.
何艳  刘静 《生命科学》2010,(5):411-415
细胞衰老是细胞脱离细胞周期并不可逆地丧失增殖能力后进入的一种相对稳定的状态,虽然基本代谢过程仍然能够维持,但丧失合成DNA及增殖能力。细胞衰老具有复制衰老、癌基因诱导的衰老及加速衰老等类型。衰老细胞具有细胞体积大而扁平、细胞停止分裂及SA-β-gal反应阳性等明显特性,复制衰老还具有端粒缩短到无法维持染色体结构完整性的特征。目前已知,p53-p21和p16-pRB在细胞衰老过程中起着重要的调控作用,细胞衰老对肿瘤的形成起着天然的屏障作用。通过抑制端粒酶活性来诱导肿瘤细胞衰老和通过胞外刺激或化学治疗药物诱导肿瘤细胞发生衰老样生长停滞,已成为抗肿瘤研究的新思路。  相似文献   

10.

Background

The molecular chaperone Hsp90 is a promising new target in cancer therapy and selective Hsp90 inhibitors are currently in clinical trials. Previously these inhibitors have been reported to induce either cell cycle arrest or cell death in cancer cells. Whether the cell cycle arrest is reversible or irreversible has not generally been assessed. Here we have examined in detail the cell cycle arrest and cell death responses of human small cell lung cancer cell lines to Hsp90 inhibition.

Methodology/Principal Findings

In MTT assays, small cell lung cancer cells showed a biphasic response to the Hsp90 inhibitors geldanamycin and radicicol, with low concentrations causing proliferation arrest and high concentrations causing cell death. Assessment of Hsp90 intracellular activity using loss of client protein expression showed that geldanamycin concentrations that inhibited Hsp90 correlated closely with those causing proliferation arrest but not cell death. The proliferation arrest induced by low concentrations of geldanamycin was not reversed for a period of over thirty days following drug removal and showed features of senescence. Rare populations of variant small cell lung cancer cells could be isolated that had additional genetic alterations and no longer underwent irreversible proliferation arrest in response to Hsp90 inhibitors.

Conclusions/Significance

We conclude that: (1) Hsp90 inhibition primarily induces premature senescence, rather than cell death, in small cell lung cancer cells; (2) small cell lung cancer cells can bypass this senescence through further genetic alterations; (3) Hsp90 inhibitor-induced cell death in small cell lung cancer cells is due to inhibition of a target other than cytosolic Hsp90. These results have implications with regard to how these inhibitors will behave in clinical trials and for the design of future inhibitors in this class.  相似文献   

11.
Our previous work has reported an anti-proliferative compound from moutan cortex, paeoniflorigenone which can induce cancer-selective apoptosis. However, its anti-proliferative mechanism is still unknown. According to morphology changes (hypertrophy and flattening), we hypothesized that PFG can induce senescence or inhibit cell mitosis. Here we show that PFG can induce cellular senescence, evidenced by the expression of senescence-associated β-galactosidase, G0/G1 cell cycle arrest and permanent loss of proliferative ability, in normal TIG-1 diploid fibroblast but not cancerous HeLa cells. In cancerous HeLa cells, PFG inhibited proliferation by inducing S and G2/M cell cycle arrest and mitosis inhibition. DNA damage response was activated by PFG, interestingly the reactive oxygen species level was suppressed instead of escalated. To sum up, we report 3 new roles of PFG as, 1. inducer of premature senescence in normal TIG-1 cells, 2. inhibitor of mitosis in cancerous HeLa cells, 3. ROS scavenger.

Abbreviations: PFG: Paeoniflorigenone; ROS: reactive oxygen species; ATM: ataxia telangiectasia mutated; t-BHP: tert-butyl hydroperoxide; SA-β-gal: senescence-associatedβ-galactosidase; DNA-PKcs: DNA-dependent protein kinase; γ-H2AX: H2AX phosphoryla-tion at Ser-139  相似文献   


12.
We have previously demonstrated that three potent iron chelators, hinokitiol, dithizone and deferoxamine, induce differentiation of F9 embryonal carcinoma cells, as do other well-known morphogens such as retinoic acid (RA) and sodium butyrate (NaB). In this study, we compared the patterns of cell proliferation, cell death and cell cycle arrest during the process of differentiation induced by these five agents. When F9 cells were cultured with the agents at their individual differentiation-inducing concentrations, cell proliferation was rapidly inhibited by treatment with the iron chelators and NaB. In contrast, RA did not influence the rate of increase of cell number at the concentration of 1 microm. The three chelators also caused a marked reduction in cell viability, and the treated cells exhibited internucleosomal DNA fragmentation, whereas cells treated with NaB showed no apoptotic characteristics. RA induced apoptosis weakly at 1 microm and strongly at higher concentrations. In addition, all the iron chelators hindered cell cycle progression, resulting in an arrest at the G1-S interface or S phase. The phenomena observed in chelator-treated cells were considerably different from those in RA- or NaB-treated cells. It is concluded that the three iron chelators cause both severe apoptotic cell death and cell cycle arrest of proliferating F9 cells via cellular iron deprivation, and that this apoptotic change may be independent of the process of differentiation.  相似文献   

13.
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a pivotal glycolytic enzyme, and a signaling molecule which acts at the interface between stress factors and the cellular apoptotic machinery. Earlier, we found that knockdown of GAPDH in human carcinoma cell lines resulted in cell proliferation arrest and chemoresistance to S phase-specific cytotoxic agents. To elucidate the mechanism by which GAPDH depletion arrests cell proliferation, we examined the effect of GAPDH knockdown on human carcinoma cells A549. Our results show that GAPDH-depleted cells establish senescence phenotype, as revealed by proliferation arrest, changes in morphology, SA-β-galactosidase staining, and more than 2-fold up-regulation of senescence-associated genes DEC1 and GLB1. Accelerated senescence following GAPDH depletion results from compromised glycolysis and energy crisis leading to the sustained AMPK activation via phosphorylation of α subunit at Thr172. Our findings demonstrate that GAPDH depletion switches human tumor cells to senescent phenotype via AMPK network, in the absence of DNA damage. Rescue experiments using metabolic and genetic models confirmed that GAPDH has important regulatory functions linking the energy metabolism and the cell cycle networks. Induction of senescence in LKB1-deficient non-small cell lung cancer cells via GAPDH depletion suggests a novel strategy to control tumor cell proliferation.  相似文献   

14.
15.
Chemotherapy has always been one of the most effective ways in combating human glioma. However, the high metastatic potential and resistance toward standard chemotherapy severely hindered the chemotherapy outcomes. Hence, searching effective chemotherapy drugs and clarifying its mechanism are of great significance. Salinomycin an antibiotic shows novel anticancer potential against several human tumors, including human glioma, but its mechanism against human glioma cells has not been fully elucidated. In the present study, we demonstrated that salinomycin treatment time- and dose-dependently inhibited U251 and U87 cells growth. Mechanically, salinomycin-induced cell growth inhibition against human glioma was mainly achieved by induction of G1-phase arrest via triggering reactive oxide species (ROS)-mediated DNA damage, as convinced by the activation of histone, p53, p21 and p27. Furthermore, inhibition of ROS accumulation effectively attenuated salinomycin-induced DNA damage and G1 cell cycle arrest, and eventually reversed salinomycin-induced cytotoxicity. Importantly, salinomycin treatment also significantly inhibited the U251 tumor xenograft growth in vivo through triggering DNA damage-mediated cell cycle arrest with involvement of inhibiting cell proliferation and angiogenesis. The results above validated the potential of salinomycin-based chemotherapy against human glioma.  相似文献   

16.
BackgroundCastration-resistant prostate cancer (CRPC) is a deadly malignancy without effective therapeutics. Cyclovirobuxine (CVB) can play an anticancer role by inhibiting mitochondrial function, regulating tumor cell apoptosis, dysregulating autophagy, and other mechanisms. This study aimed to examine the function and mechanism of CVB in CRPC to provide new insights into CRPC treatment.MethodsThe effect of CVB on PC3 and C4-2 cell viability was determined using a CCK8 assay. Core therapeutic targets of CVB in CRPC cells were identified using RNA sequencing, online database, and PPI network analyses. Western blotting, RT–qPCR and molecular docking were performed to evaluate the regulation of core targets by CVB. Utilizing GO and KEGG enrichment analyses, the probable anti-CRPC mechanism of CVB was investigated. Immunofluorescence, flow cytometry and colony formation assays were used to verify the potential phenotypic regulatory role of CVB in CRPC.ResultsCVB inhibited CRPC cell activity in a concentration-dependent manner. Mechanistically, it primarily regulated BRCA1-, POLD1-, BLM-, MSH2-, MSH6- and PCNA-mediated mismatch repair, homologous recombination repair, base excision repair, Fanconi anemia repair, and nucleotide excision repair pathways. Immunofluorescence, Western blot, flow cytometry and colony formation experiments showed that CVB induced DNA damage accumulation, cell apoptosis, and cell cycle arrest and inhibited CRPC cell proliferation.ConclusionCVB can induce DNA damage accumulation in CRPC cells by targeting DNA repair pathways and then induce cell apoptosis and cell cycle arrest, eventually leading to inhibition of the long-term proliferation of CRPC cells.  相似文献   

17.
Recent studies demonstrated that simvastatin has antitumor properties in several types of cancer cells, mainly by inducing apoptosis and inhibiting growth. The arrest of proliferation is a feature of cellular senescence; however, the occurrence of senescence in melanoma cells upon simvastatin treatment has not been investigated until now. Our results demonstrated that exposure of human metastatic melanoma cells (WM9) to simvastatin induces a senescent phenotype, characterized by G1 arrest, positive staining for senescence-associated β-galactosidase assay, and morphological changes. Also, the main pathways leading to cell senescence were examined in simvastatin-treated human melanoma cells, and the expression levels of phospho-p53 and p21 were upregulated by simvastatin, suggesting that cell cycle regulators and DNA damage pathways are involved in the onset of senescence. Since simvastatin can act as a pro-oxidant agent, and oxidative stress may be related to senescence, we measured the intracellular ROS levels in WM9 cells upon simvastatin treatment. Interestingly, we found an increased amount of intracellular ROS in these cells, which was accompanied by elevated expression of catalase and peroxiredoxin-1. Collectively, our results demonstrated that simvastatin can induce senescence in human melanoma cells by activation of p53/p21 pathway, and that oxidative stress may be related to this process.  相似文献   

18.
Previously, we have identified a novel centrosomal protein centrobin that asymmetrically localizes to the daughter centriole. We found that depletion of centrobin expression inhibited the centriole duplication and impaired cytokinesis. However, the biological significance of centrobin in the cell cycle remains unknown. In the current study, we observed that silencing centrobin significantly inhibited the proliferation of lung cancer cell A549 and prevented the cells from G1 to S transition, whereas the growth rate of lung cancer cell line H1299, a p53-null cell line, was not affected. Furthermore, we demonstrated that the G1–S-phase arrest induced by centrobin knockdown in A549 cells is mediated by the upregulation of cell-cycle regulator p53, which is associated with the activation of cellular stress induced p38 pathway instead of DNA damage induced ATM pathway. Inhibition of p38 activity or downregulation of p38 expression could overcome the cell-cycle arrest caused by centrobin depletion. Taken together, our current findings demonstrated that centrobin plays an important role in the progression of cell cycle, and a tight association between the cell-cycle progression and defective centrosomes caused by depletion of centrobin.  相似文献   

19.
In cancer patients, treatment modalities like chemotherapy and radiation exert their anticancer effects by inducing DNA damage. The cancer cells can survive under genotoxic stress by inducing DNA damage response (DDR) or can undergo cell death. The process of autophagy is emerging as crucial regulator of cell survival during different stress conditions. Post translational modification through ubiquitin plays an essential role in DDR during genotoxic stress conditions. Ubiquitin ligases regulate autophagy and cell death pathways however their role during genotoxic stress conditions is not understood. In the current study we identified TRIM8, RING E3 Ligase, as a novel regulator of autophagy during DDR. TRIM8 regulates lysosomal biogenesis and autophagy flux. The turnover of TRIM8 is high and is stabilized during genotoxic stress conditions. TRIM8 regulated autophagy is essential for its cytoprotective role during genotoxic stress induced cell death. TRIM8 stabilizes the turnover of XIAP during genotoxic stress and forms complex with XIAP and caspase-3 to inhibit its activation in presence of etoposide. TRIM8 mediated autophagy promotes degradation of cleaved caspase-3 subunits. This study described TRIM8, as a novel regulator of DDR-autophagy crosstalk, which may play role in survival of cancer cells in presence of genotoxic agents.  相似文献   

20.
Cellular senescence is recognized as a potent anticancer mechanism that inhibits carcinogenesis. Cancer cells can also undergo senescence upon chemo- or radiotherapy. Curcumin, a natural polyphenol derived from the rhizome of Curcuma longa, shows anticancer properties both in vitro and in vivo. Previously, we have shown that treatment with curcumin leads to senescence of human cancer cells. Now we identified the molecular mechanism underlying this phenomenon. We observed a time-dependent accumulation of mitotic cells upon curcumin treatment. The time-lapse analysis proved that those cells progressed through mitosis for a significantly longer period of time. A fraction of cells managed to divide or undergo mitotic slippage and then enter the next phase of the cell cycle. Cells arrested in mitosis had an improperly formed mitotic spindle and were positive for γH2AX, which shows that they acquired DNA damage during prolonged mitosis. Moreover, the DNA damage response pathway was activated upon curcumin treatment and the components of this pathway remained upregulated while cells were undergoing senescence. Inhibition of the DNA damage response decreased the number of senescent cells. Thus, our studies revealed that the induction of cell senescence upon curcumin treatment resulted from aberrant progression through the cell cycle. Moreover, the DNA damage acquired by cancer cells, due to mitotic disturbances, activates an important molecular mechanism that determines the potential anticancer activity of curcumin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号