首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Fungal biology》2022,126(3):201-212
Blue mold caused by Penicillium italicum is a severe postharvest disease in citrus fruits. In this study, the fermentation product (FP-E) of Aspergillus aculeatus GC-09, an endophytic fungus isolated from a citrus plant, was found to exhibit antifungal activity against P. italicum with a MIC of 0.3125 mg/mL. The fungus A. aculeatus GC-09 was identified based on the studies of morphology and ITS nucleotide sequence. FP-E significantly inhibited the spore germination and mycelial growth of P. italicum. Scanning electron microscopy (SEM) results of P. italicum treated with FP-E showed shrunken, distorted and collapsed hyphae and conidiospores, indicative of the cell membrane damage, which was further confirmed by the propidium iodide (PI) fluorescent staining analysis. Consistent with the microscopy observation, FP-E led to the leakage of cellular constituents from P. italicum, which is evident from the increase in electrical conductivity and nucleic acid contents in the mycelial solution incubated with FP-E. In addition, FP-E treatment considerably increased the intracellular reactive oxygen species (ROS) content, and reduced the enzyme activities of both catalase (CAT) and peroxidase (POD) in P. italicum cells. Furthermore, orange fruits treated with FP-E showed fewer disease symptoms compared to the untreated fruits. These results suggested that the antifungal activity of FP-E might be associated with the disruption of cell membrane integrity, the accumulation of ROS level, and the reduction of the antioxidant enzymes activity of P. italicum. Therefore, A. aculeatus GC-09 might be a potential microbial resource for the biocontrol of citrus postharvest blue mold.  相似文献   

2.
Hydrogen sulfide (H2S) has proved to be a multifunctional signaling molecule in plants and animals. Here, we investigated the role of H2S in the decay of fresh-cut pears (Pyrus pyrifolia). H2S gas released by sodium hydrosulfide (NaHS) prolonged the shelf life of fresh-cut pear slices in a dose-dependent manner. Moreover, H2S maintained higher levels of reducing sugar and soluble protein in pear slices. H2S significantly reduced the accumulation of hydrogen peroxide (H2O2), superoxide radicals (•O2 ) and malondialdehyde (MDA). Further investigation showed that H2S fumigation up-regulated the activities of antioxidant enzymes ascorbate peroxidase (APX), catalase (CAT), and guaiacol peroxidase (POD), while it down-regulated those of lipoxygenase (LOX), phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO). Furthermore, H2S fumigation effectively inhibited the growth of two fungal pathogens of pear, Aspergillus niger and Penicillium expansum, suggesting that H2S can be developed as an effective fungicide for postharvest storage. The present study implies that H2S is involved in prolonging postharvest storage of pears by acting as an antioxidant and fungicide.  相似文献   

3.
In order to control postharvest rot of satsuma mandarin (mandarin) fruits, a new strain of Bacillus amyloliquefaciens JBC36 (JBC36) was isolated from rhizosphere of a mandarin orchard and tested for its suppression of decay due to green and blue molds caused by Penicillium digitatum and Penicillium italicum, respectively, and its mode of action was investigated. In addition, carnauba wax-based and paraffin oil-based coating formulations were developed to increase the control efficacy of the antagonist. The strain JBC36 at 108 CFU mL?1 inhibited incidence of green and blue molds on wounded mandarin fruits with control efficacies of 88 and 80.2%, respectively. Mycelial growth and spore germination of P. digitatum and P. italicum were strongly inhibited in the presence of JBC36 or antagonistic metabolites. In order to determine antifungal activity, three kinds of antibiotics were isolated by reverse-phase high performance liquid chromatography (RP-HPLC) and identified as lipopeptide families, iturin A, fengycin and surfactin by RP-HPLC and thin-layer chromatography (TLC) analysis. Fengycin was further identified as C16 fengycin A by liquid chromatography/electrospray ionisation-mass spectrometry (LC/ESI-MS) and mass spectrometry/mass spectrometry (MS/MS) analysis. Volatile organic compounds from the antagonist also reduced the mycelial growth of P. digitatum and P. italicum. Carnauba wax-based and paraffin oil-based coating formulations containing 108 CFU mL?1 of JBC36 efficiently decreased the incidence of green mold with control efficacy of 91 and 80.9%, respectively. Overall, the antagonistic rhizobacterium JBC36 is a promising biocontrol agent for use in preventing postharvest spoilage of mandarin fruits by green and blue molds.  相似文献   

4.
Zhong  Ting-Ying  Yao  Gai-Fang  Wang  Sha-Sha  Li  Ting-Ting  Sun  Ke-Ke  Tang  Jun  Huang  Zhong-Qin  Yang  Feng  Li  Yan-Hong  Chen  Xiao-Yan  Hu  Lan-Ying  Zhang  Hua  Hu  Kang-Di 《Journal of Plant Growth Regulation》2021,40(6):2548-2559

As a signaling molecule, hydrogen sulfide (H2S) plays an indispensable role in the modulation of ripening and senescence in fruits and vegetables. To explore the role of H2S in regulating metabolism of postharvest tomato, ripening-related physiological parameters, activities of antioxidant enzymes and gene expression were analyzed in H2S-fumigated tomato fruits. These results show that H2S significantly delayed the color transition and softening of tomato fruit, and maintained higher level of flavonoids and lower level of anthocyanin during storage. Besides, H2S could maintain higher level of nutritional-related metabolites, such as reducing sugar, ascorbic acid during postharvest storage. Moreover, H2S decreased the rate of O2 production, inhibited the production of H2O2 and malondialdehyde (MDA), enhanced the activities of antioxidant enzymes including ascorbate peroxidase (APX), superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (POD) in tomato fruits, while reduced the activities of phenylalanine ammonia lyase (PAL), polyphenol oxidase (PPO) and lipoxygenase (LOX). Besides, the expression of the antioxidant-encoding genes SlCAT2, SlPOD12 was generally upregulated with H2S fumigation. Principal component analysis (PCA) suggests that H2S induced significant discrepancy mainly to the differences in firmness, anthocyanin, flavonoid and the activity of guaiacol peroxidase (POD), and the correlation analysis further shows that H2S affected pigment metabolism and nutritional quality. In conclusion, H2S could maintain better appearance and nutritional quality, and prolong the storage period of postharvest tomato fruits through activating the antioxidative system.

  相似文献   

5.
The antifungal activity of bongkrekic acid against 17 tested molds was determined. Bongkrekic acid prevented spore germination and mycelial proliferation of Aspergillus niger, Rhizopus oryzae and Penicillium italicum. The action of bongkrekic acid was fungicidal. Under these conditions, the incorporation of 14C-leucine and 14C-uracil into the perchloric acid insoluble material of germinating A. niger conidia was significantly reduced by bongkrekic acid. Respiratory activity of resting spores was not affected by bongkrekic acid. Respiratory activity of germinated spores was inhibited by bongkrekic acid to the extent of 30 to 60% of controls for A. niger, R. oryzae and P. italicum. It has been concluded that operation of adenine nucleotide translocation in mitochondria of tested fungi is obligatory both for normal spore germination and fungal growth.  相似文献   

6.
Green and blue mold postharvest diseases are the most vital negative components influencing the local market of citrus fruits. Citrus fruits were collected, and fungi were isolated. Among the fungal isolates identified, Penicillium digitatum and Penicillium italicum recorded the highest occurrence of 39.5 and 25.6%, respectively. In this work, we extracted chitosan from Aspergillum niger ATCC 9642. Fourier transform infrared spectroscopy was utilized to confirm the functional groups of the obtained compound, which exhibited the main characteristic bands of O–H stretching at 3302 cm-1, and C–O–C band at 1125 cm-1. A. niger ATCC 9642 chitosan had the degree of deacetylation of 88.5%, a molecular weight of 1.8 × 105 Da, and viscosity of 7.3 centipoises; these values were comparable to those for standard shrimp chitosan. Ultraviolet-visible light spectra revealed the presence of A. niger ATCC 9642 chitosan-AgNPs composite. Using antifungal and spore germination assays, it was found that this composite exhibited effective antifungal action against P. digitatum and P. italicum compared with a chitosan standard. In a comet assay, the percentage of tail DNA was considered as a parameter that indicated DNA damage. The comet parameter increased significantly (P < 0.05) with A. niger ATCC 9642 chitosan–AgNPs composite, and the increase was dose-dependent. The increase in the DNA damage positively correlated with the inhibition performance of the A. niger ATCC 9642 chitosan–AgNPs composite.  相似文献   

7.
Struvite (magnesium ammonium phosphate-MgNH4PO4·6H2O), which can extensively crystallize in wastewater treatments, is a potential source of N and P as fertilizer, as well as a means of P conservation. However, little is known of microbial interactions with struvite which would result in element release. In this work, the geoactive fungus Aspergillus niger was investigated for struvite transformation on solid and in liquid media. Aspergillus niger was capable of solubilizing natural (fragments and powder) and synthetic struvite when incorporated into solid medium, with accompanying acidification of the media, and extensive precipitation of magnesium oxalate dihydrate (glushinskite, Mg(C2O4).2H2O) occurring under growing colonies. In liquid media, A. niger was able to solubilize natural and synthetic struvite releasing mobile phosphate (PO43−) and magnesium (Mg2+), the latter reacting with excreted oxalate resulting in precipitation of magnesium oxalate dihydrate which also accumulated within the mycelial pellets. Struvite was also found to influence the morphology of A. niger mycelial pellets. These findings contribute further understanding of struvite solubilization, element release and secondary oxalate formation, relevant to the biogeochemical cycling of phosphate minerals, and further directions utilizing these mechanisms in environmental biotechnologies such as element biorecovery and biofertilizer applications.  相似文献   

8.
Some organic and inorganic salts could inhibit the growth of many pathogens. Selenium (Se), as an essential micronutrient, was effective in improving the plant resistance and antioxidant capacity at a low concentration. Penicillium expansum is one of the most important postharvest fungal pathogens, which can cause blue mold rot in various fruits and vegetables. In this study, the inhibitory effect of Se against P. expansum was evaluated. The result showed that Se strongly inhibited spore germination, germ tube elongation, and mycelial spread of P. expansum in the culture medium. The inhibitory effect was positively related to the concentration of Se used. Fluorescence microscopy observation of P. expansum conidia stained with propidium iodide (PI) indicated that the membrane integrity decreased to 37 % after the conidia were treated with Se (20 mg/l) for 9 h. With the use of an oxidant-sensitive probe 2,7-dichlorofluorescin (DCHF-DA), we found that Se at 15 mg/l could induce the generation of intracellular reactive oxygen species (ROS). Furthermore, methane dicarboxylic aldehyde (MDA) content, hydrogen peroxide (H2O2), and superoxide anion (O2 ?) production rate in P. expansum spores exposed to Se increased markedly. Compared with the control, the activities of superoxide dismutase (SOD) and the content of glutathione (GSH) were reduced, confirming that damage of Se to cellular oxygen-eliminating system is the main reason. These results suggest that Se might serve as a potential alternative to synthetic fungicides for the control of the postharvest disease of fruit and vegetables caused by P. expansum.  相似文献   

9.
Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain < parent strain < ΔXCA-29 strain. While the soluble fraction forms 60 % of the total mycelial Mn[II] content, arginase accounted for a significant fraction of this soluble Mn[II] pool. Changes in the arginase levels affected the absolute mycelial Mn[II] content but not its distribution in the various mycelial fractions. The A. niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability.  相似文献   

10.
《Fungal biology》2023,127(3):949-957
Black spot rot caused by Alternaria alternata is one of the major postharvest disease of apple fruit during logistic. This study evaluated in vitro inhibitory effect of 2-hydroxy-3-phenylpropanoic acid (PLA) at various concentrations on A. alternata and the possible mechanisms involved in its action. Results showed that different concentrations of PLA inhibited conidia germination and mycelial growth of A. alternata in vitro, and 1.0 g L−1 was the lowest effective concentration to suppress A. alternata growth. Moreover, PLA significantly reduced relative conductivity and increased malondialdehyde and soluble protein contents. PLA also increased H2O2 and dehydroascorbic acid contents, but reduced ascorbic acid content. Additionally, PLA treatment inhibited catalase, ascorbate peroxidase, monodehydroascorbate acid reductase, dehydroascorbic acid reductase and glutathione reductase activities, whereas promoted superoxide dismutase activity. All these findings suggest that the possible mechanisms involved in the inhibitory effect of PLA on A. alternata included damaging the cell membrane integrity to cause electrolyte leakage and destroying reactive oxygen species balance.  相似文献   

11.
The efficacy of the yeastKloeckera apiculata, strain 34-9, in controlling postharvest decay of citrus fruit was evaluated in small-scale and pilot tests in commercial packinghouse. Kloeckera apiculata grew efficiently on different media and maintained its antagonistic activity against spore germination ofPenicillium italicum. In small-scale experiments with citrus fruits dipped in the yeast cell suspension, the development of decay in citrus was effectively inhibited. The yeast was compatible with a mixture of low concentration of a commonly chemical fungicide. In packinghouse tests, combining the yeast with 40 mg/kg Carbendazim (MBC) resulted a reduction in the incidence of decay to a level equal to that of the commercial treatment of 200 mg/kg MBC. The efficacy of the strain 34-9 could also be maintained under packinghouse conditions at a cell concentration of the yeast antagonist as low as 106 cells/ml. No significant difference in the efficacy ofK. apiculata was found in either the drench or the spray application systems tested in citrus packinghouse. Scanning electron microscopy revealed attachment of the yeast cells to the pathogen hyphae. The high antagonistic activity of strain 34-9 against citrus blue mould may be related to its capability to compete withPenicillium italicum, for space and nutrients and /or involvement of directly antagonist of the yeast on the fungus.  相似文献   

12.
Succinate dehydrogenase inhibitor (SDHI) fungicides are important tools to control preharvest and postharvest brown rot of stone fruits. In this study we determined the mycelial growth rate of Monilinia fructicola isolates on various media and picked the three that allowed the fastest growth to assess the sensitivity of mycelium to SDHI fungicides boscalid, fluopyram, and penthiopyrad. Minimal medium (MM) supported mycelial growth the best and yielded lowest EC50 values for three SDHI fungicides. EC50 values corresponded with disease incidence data obtained from detached fruit assays. Penthiopyrad had significantly greater intrinsic activity in vitro compared to fluopyram at the α = 0.05 level and compared to boscalid at the α = 0.1 level. However, detached fruit assays revealed that this ‘advantage’ did not carry over in vivo. In conclusion, MM appears to be the best medium currently available to assess the sensitivity of M. fructicola mycelium in vitro.  相似文献   

13.
The antifungal activity of substances interfering with the function and biogenesis of mitochondria was studied. Strict anaerobiosis, cyanide, azide, oligomycin, bongkrekic acid and ethidium bromide were found to prevent spore germination ofAspergillus niger andPenicillium italicum in liquid germination medium. The effect of azide, oligomycin and ethidium bromide was fungicidal. Cyanide and azide completely inhibited the incorporation of14C-leucine and14C-uracil into germinating conidia ofA. niger. Oligomycin and ethidium bromide reduced the extent of incorporation of both precursors in the first few hours of conidial germination and at later stages stopped it completely. The inhibition of both spore germination and macromolecules synthesis during the germination ofA. niger conidia were in relation to the specific inhibitory effect of the agents on respiratory activity of dormant conidia and mycelial cells. The results indicate that both the function of mitochondrial genetic and protein synthesizing systems and the function of oxidative phosphorylation are essential for normal spore germination and fungal growth.  相似文献   

14.
The growth of the filamentous fungus Aspergillus niger, a common food spoilage organism, is inhibited by the weak acid preservative sorbic acid (trans-trans-2,4-hexadienoic acid). Conidia inoculated at 105/ml of medium showed a sorbic acid MIC of 4.5 mM at pH 4.0, whereas the MIC for the amount of mycelia at 24 h developed from the same spore inoculum was threefold lower. The MIC for conidia and, to a lesser extent, mycelia was shown to be dependent on the inoculum size. A. niger is capable of degrading sorbic acid, and this ability has consequences for food preservation strategies. The mechanism of action of sorbic acid was investigated using 31P nuclear magnetic resonance (NMR) spectroscopy. We show that a rapid decline in cytosolic pH (pHcyt) by more than 1 pH unit and a depression of vacuolar pH (pHvac) in A. niger occurs in the presence of sorbic acid. The pH gradient over the vacuole completely collapsed as a result of the decline in pHcyt. NMR spectra also revealed that sorbic acid (3.0 mM at pH 4.0) caused intracellular ATP pools and levels of sugar-phosphomonoesters and -phosphodiesters of A. niger mycelia to decrease dramatically, and they did not recover. The disruption of pH homeostasis by sorbic acid at concentrations below the MIC could account for the delay in spore germination and retardation of the onset of subsequent mycelial growth.  相似文献   

15.
The optimisation of submerged culture conditions and nutritional requirements was studied for the production of exopolysaccharide (EPS) fromPleurotus nebrodensis. The optimal temperature and initial pH for both mycelial growth and EPS production in shake flask cultures were 25 °C and 8.0, respectively. Maltose was found the most suitable carbon source for both mycelial biomass and EPS production. Yeast extract was favourable nitrogen source for both mycelial biomass and EPS production. Optimum concentration of each medium component was determined using the orthogonal matrix method. The optimal combination of the media constituents for mycelial growth and EPS production was as follows: 200 g l?1 bran, 25 g l?1 maltose, 3 g l?1 yeast extract, 1 g l?1 KH2PO4, 1 g l?1 MgSO4 7H2O. Under the optimal conditions, the mycelial biomass (4.13 g l?1) and EPS content (2.40 g l?1) ofPleurotus nebrodensis was 2.3 and 3.6 times compared to the control with basal medium respectively.  相似文献   

16.
Filamentous fungi show great promise in remediation of environmental contaminants such as industrial dyes. In the current study, Aspergillus niger (Genbank ID: JF437542) decolorized 82 % of the test dye malachite green (MG; 50 mg/l) during cultivation for 24 h. The organism decolorized only 6 % of the MG at higher concentration (250 mg MG/l) during the same time period and growth was inhibited at this higher MG concentration. Exposing A. niger to different types of stress resulted in variable impacts on ability to decolorize MG. CaCl2 had the largest positive impact on decolorization. A. niger cultures treated with CaCl2 (1 M) decolorized 46 % of the MG (250 mg/l) in 1 h compared to 6 % in untreated control cultures. CaCl2 also increased catalase production in A. niger which strongly supported a direct relationship between stress response and decolorizing ability. Spectrophotometric measurement confirmed MG decolorization while Fourier transform infrared spectroscopy suggested that biodegradation of MG occurred. Cultures treated with CaCl2 accumulated fewer toxic MG by-products than untreated cultures. CaCl2-induced stress increased the permeability and conductivity of the fungal cell membrane. An observed increase in medium [H+] also suggested a change in Ca2+/H+ exchange capacity in the fungal cell. Calcium ions had a pronounced effect on membrane properties and this may have had an important impact on signal transduction. We conclude that A. niger decolorizes MG and that CaCl2 enhances this process; the CaCl2 effect appears to be associated with stress response.  相似文献   

17.
Pathogenicity test of all fungi (14 different isolates) isolated from both infected tomato fruits and the surface wash of other healthy fruits had different pathogenicity rates. The genus Rhizopus sp. was the most pathogenic one followed by Fusarium sp. Trichoderma harzianum isolates (T3 and T4) had a different pattern of antagonism against the tested pathogens. In dual plate test of the antagonistic action of T3 and T24 against the postharvest pathogens, clear zone size ranged between 1 and 4 and 3 and 6 mm by T3 and T24, respectively. The antagonists (T3 and T24) didn't show inhibition zone against Rhizopus sp., but they could overgrow it by 100% after 9 days of incubation. Mostly, all the other postharvest isolates showed high degree of overgrowth by T3 than T24. The two antagonists failed to overgrow Aspergillus species except for A. niger (3) which was overgrown by T3. Volatile and non-volatile metabolite tests indicated that mycelial growth of Penicillium stekii was significantly inhibited by T3 and T24 more than the other tested pathogens. The inhibition of A. niger (1) was 12% by non-volatile metabolites of T24 produced after 1 day incubation, and reached to 97% inhibition by the metabolites of 3 days. Interestingly, inhibition of Aspergillus sp. by volatile compounds of T3 and T24 was 2% and 20%, respectively, whereas the inhibition of the same pathogen by non-volatile compounds reached 75% and 87%, respectively. The results of slice assay clearly indicate that T. harzianum (T3 and T24) could provide a complete protection to tomato slices from the infection of the tested pathogens. After 3 days of incubation, Trichoderma suppressed the linear growth of these pathogens on tomato slices and the percentage of suppression was significant and ranged between 80 and 100%, except with Rhizopus sp. the suppression reached 33% only.  相似文献   

18.
Periodontal disease is associated with changes in the composition of the oral microflora, where health-associated oral streptococci decrease while Gram-negative anaerobes predominate in disease. A key feature of periodontal disease-associated anaerobes is their ability to produce hydrogen sulfide (H2S) abundantly as a by-product of anaerobic metabolism. So far, H2S has been reported to be either cytoprotective or cytotoxic by modulating bacterial antioxidant defense systems. Although oral anaerobes produce large amounts of H2S, the potential effects of H2S on oral streptococci are currently unknown. The aim of this study was to determine the effects of H2S on the survival and biofilm formation of oral streptococci. The growth and biofilm formation of Streptococcus mitis and Streptococcus oralis were inhibited by H2S. However, H2S did not significantly affect the growth of Streptococcus gordonii or Streptococcus sanguinis. The differential susceptibility of oral streptococci to H2S was attributed to differences in the intracellular concentrations of reduced glutathione (GSH). In the absence of GSH, H2S elicited its toxicity through an iron-dependent mechanism. Collectively, our results showed that H2S exerts antimicrobial effects on certain oral streptococci, potentially contributing to the decrease in health-associated plaque microflora.  相似文献   

19.
20.
TheCYP51 gene encoding eburicol 14α-demethylase (P45014DM) was cloned from a genomic library of the filamentous fungal plant pathogenPenicillium italicum, by heterologous hybridisation with the corresponding gene encoding lanosterol 14α-demethylase from the yeastCandida tropicalis. The nucleotide sequence of a 1739-bp genomic fragment and the corresponding cDNA clone comprises an open reading frame (ORF) of 1545 bp, encoding a protein of 515 amino acids with a predicted molecular mass of 57.3 kDa. The ORF is interrupted by three introns of 60, 72 and 62 bp. The C-terminal part of the protein includes a characteristic haem-binding domain, HR2, common to all P450 genes. The deducedP. italicum P45014DM protein and the P45014DM proteins fromCandida albicans, C. tropicalis andSaccharomyces cerevisiae share 47.2, 47.0 and 45.8% amino acid sequence identity. Therefore, the cloned gene is classified as a member of theCYP51 family. Multiple copies of a genomic DNA fragment ofP. italicum containing the cloned P450 gene were introduced intoAspergillus niger by transformation. Transformants were significantly less sensitive to fungicides which inhibit P45014DM activity, indicating that the cloned gene encodes a functional eburicol 14α-demethylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号